skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Multi-Scale Graph Learning for Anti-Sparse Downscaling
Water temperature can vary substantially even across short distances within the same sub-watershed. Accurate prediction of stream water temperature at fine spatial resolutions (i.e., fine scales, ≤ 1 km) enables precise interventions to maintain water quality and protect aquatic habitats. Although spatiotemporal models have made substantial progress in spatially coarse time series modeling, challenges persist in predicting at fine spatial scales due to the lack of data at that scale. To address the problem of insufficient fine-scale data, we propose a Multi-Scale Graph Learning (MSGL) method. This method employs a multi-task learning framework where coarse-scale graph learning, bolstered by larger datasets, simultaneously enhances fine-scale graph learning. Although existing multi-scale or multi-resolution methods integrate data from different spatial scales, they often overlook the spatial correspondences across graph structures at various scales. To address this, our MSGL introduces an additional learning task, cross-scale interpolation learning, which leverages the hydrological connectedness of stream locations across coarse- and fine-scale graphs to establish cross-scale connections, thereby enhancing overall model performance. Furthermore, we have broken free from the mindset that multi-scale learning is limited to synchronous training by proposing an Asynchronous Multi-Scale Graph Learning method (ASYNC-MSGL). Extensive experiments demonstrate the state-of-the-art performance of our method for anti-sparse downscaling of daily stream temperatures in the Delaware River Basin, USA, highlighting its potential utility for water resources monitoring and management.  more » « less
Award ID(s):
2147195 2239175 2126474 2316305
PAR ID:
10584673
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
39
Issue:
27
ISSN:
2159-5399
Page Range / eLocation ID:
27969 to 27977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We define a novel type of ensemble graph convolutional network (GCN) model. Using optimized linear projection operators to map between spatial scales of graph, this ensemble model learns to aggregate information from each scale for its final prediction. We calculate these linear projection operators as the infima of an objective function relating the structure matrices used for each GCN. Equipped with these projections, our model (a Graph Prolongation-Convolutional Network) outperforms other GCN ensemble models at predicting the potential energy of monomer subunits in a coarse-grained mechanochemical simulation of microtubule bending. We demonstrate these performance gains by measuring an estimate of the Floating Point OPerations spent to train each model, as well as wall-clock time. Because our model learns at multiple scales, it is possible to train at each scale according to a predetermined schedule of coarse vs. fine training. We examine several such schedules adapted from the algebraic multigrid literature, and quantify the computational benefit of each. We also compare this model to another model which features an optimized coarsening of the input graph. Finally, we derive backpropagation rules for the input of our network model with respect to its output, and discuss how our method may be extended to very large graphs. 
    more » « less
  2. Multilevel modeling and multi-task learning are two widely used approaches for modeling nested (multi-level) data, which contain observations that can be clustered into groups, characterized by their group-level features. Despite the similarity of the problems they address, the explicit relationship between multilevel modeling and multi-task learning has not been carefully examined. In this paper, we present a comparative analysis between the two methods to illustrate their strengths and limitations when applied to two-level nested data. We provide a detailed analysis demonstrating the equivalence of their formulations under a mild condition from an optimization perspective. We also demonstrate their limitations in terms of their predictive performance and especially, their difficulty in identifying potential cross-scale interactions between the local and group-level features when applied to datasets with either a small number of groups or limited training examples per group. To overcome these limitations, we propose a novel method for disaggregating the coarse-scale values of the group-level features in the nested data. Experimental results on both synthetic and real-world data show that the disaggregated group-level features can help enhance the prediction accuracy of the models significantly and identify the cross-scale interactions more effectively. 
    more » « less
  3. Accurate prediction of water quality and quantity is crucial for sustainable development and human well-being. However, existing data-driven methods often suffer from spatial biases in model performance due to heterogeneous data, limited observations, and noisy sensor data. To overcome these challenges, we propose Fair-Graph, a novel graph-based recurrent neural network that leverages interrelated knowledge from multiple rivers to predict water flow and temperature within large-scale stream networks. Additionally, we introduce node-specific graph masks for information aggregation and adaptation to enhance prediction over heterogeneous river segments. To reduce performance disparities across river segments, we introduce a centralized coordination strategy that adjusts training priorities for segments. We evaluate the prediction of water temperature within the Delaware River Basin, and the prediction of streamflow using simulated data from U.S. National Water Model in the Houston River network. The results showcase improvements in predictive performance and highlight the proposed model's ability to maintain spatial fairness over different river segments. 
    more » « less
  4. Abstract Characterizing the impact of human actions on terrestrial water fluxes and storages at multi‐basin, continental, and global scales has long been on the agenda of scientists engaged in climate science, hydrology, and water resources systems analysis. This need has resulted in a variety of modeling efforts focused on the representation of water infrastructure operations. Yet, the representation of human‐water interactions in large‐scale hydrological models is still relatively crude, fragmented across models, and often achieved at coarse resolutions (10–100 km) that cannot capture local water management decisions. In this commentary, we argue that the concomitance of four drivers and innovations is poised to change the status quo: “hyper‐resolution” hydrological models (0.1–1 km), multi‐sector modeling, satellite missions able to monitor the outcome of human actions, and machine learning are creating a fertile environment for human‐water research to flourish. We then outline four challenges that chart future research in hydrological modeling: (a) creating hyper‐resolution global data sets of water management practices, (b) improving the characterization of anthropogenic interventions on water quantity, stream temperature, and sediment transport, (c) improving model calibration and diagnostic evaluation, and (d) reducing the computational requirements associated with the successful exploration of these challenges. Overcoming them will require addressing modeling, computational, and data development needs that cut across the hydrology community, thereby requiring a major communal effort. 
    more » « less
  5. null (Ed.)
    High-throughput molecular profiling technologies have produced high-dimensional multi-omics data, enabling systematic understanding of living systems at the genome scale. Studying molecular interactions across different data types helps reveal signal transduction mechanisms across different classes of molecules. In this paper, we develop a novel Bayesian representation learning method that infers the relational interactions across multi-omics data types. Our method, Bayesian Relational Learning (BayReL) for multi-omics data integration, takes advantage of a priori known relationships among the same class of molecules, modeled as a graph at each corresponding view, to learn view-specific latent variables as well as a multi-partite graph that encodes the interactions across views. Our experiments on several real-world datasets demonstrate enhanced performance of BayReL in inferring meaningful interactions compared to existing baselines. 
    more » « less