Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Density estimation is one of the fundamental problems in both statistics and machine learning. In this study, we propose Roundtrip, a computational framework for general-purpose density estimation based on deep generative neural networks. Roundtrip retains the generative power of deep generative models, such as generative adversarial networks (GANs) while it also provides estimates of density values, thus supporting both data generation and density estimation. Unlike previous neural density estimators that put stringent conditions on the transformation from the latent space to the data space, Roundtrip enables the use of much more general mappings where target density is modeled by learningmore »
-
Haliloglu, Turkan (Ed.)Cryo-electron tomography (cryo-ET) provides 3D visualization of subcellular components in the near-native state and at sub-molecular resolutions in single cells, demonstrating an increasingly important role in structural biology in situ . However, systematic recognition and recovery of macromolecular structures in cryo-ET data remain challenging as a result of low signal-to-noise ratio (SNR), small sizes of macromolecules, and high complexity of the cellular environment. Subtomogram structural classification is an essential step for such task. Although acquisition of large amounts of subtomograms is no longer an obstacle due to advances in automation of data collection, obtaining the same number of structural labelsmore »
-
Elofsson, Arne (Ed.)Abstract Motivation Cryoelectron tomography (cryo-ET) visualizes structure and spatial organization of macromolecules and their interactions with other subcellular components inside single cells in the close-to-native state at submolecular resolution. Such information is critical for the accurate understanding of cellular processes. However, subtomogram classification remains one of the major challenges for the systematic recognition and recovery of the macromolecule structures in cryo-ET because of imaging limits and data quantity. Recently, deep learning has significantly improved the throughput and accuracy of large-scale subtomogram classification. However, often it is difficult to get enough high-quality annotated subtomogram data for supervised training due to themore »