skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract To overcome the spatial resolution limit set by aperture-limited diffraction in traditional scanning transmission electron microscopy, microscopists have developed ptychography enabled by iterative phase retrieval algorithms and high-dynamic-range pixel array detectors. Current detector designs are limited by the data rate off chip, so a high-pixel-count detector has a proportionally lower frame rate than the few-segment detectors used for differential phase contrast (DPC) imaging. This slower acquisition speed leads to heightened vulnerability to scan noise, drift, and potential sample damage. This creates opportunities for repurposing fast segmented detectors for ptychography by trading a reduction in reciprocal space pixels for an increase in real space pixels. Here, we explore a strategy of oversampling in real space and instead apply detector pixel upsampling during the reconstruction process. We demonstrate the viability of achieving super-resolution ptychography on thin objects using only 2 × 2 detector pixels, surpassing the resolution of integrated DPC (iDPC) imaging. With optimization using simulated datasets and experiments on MoTe2/WSe2 bilayer moiré superlattices, we achieved super-resolution ptychography reconstructions under rapid acquisition conditions (37.5 pA, 1 μs dwell time), yielding over 50% improvements in contrast and information limit compared to annular dark field and iDPC imaging on the same detectors. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Free, publicly-accessible full text available July 30, 2025
  3. Free, publicly-accessible full text available July 30, 2025
  4. Electronic cigarettes (ECs) emit many toxic substances, including metals, that can pose a threat to users and the environment. The toxicity of the emitted metals depends on their oxidation states. Hence, this study examines the oxidation states of metals observed in EC aerosols. X-ray photoelectron spectroscopy analysis of the filters that collected EC aerosols identified the oxidation states of five primary metals (based on surface sample analysis), including chromium(III) (close to 100%) under low power setting while a noticeable amount of chromium(VI) (15%) at higher power settings of the EC, and copper(II) (100%), zinc(II) (100%), nickel(II) (100%), lead(II) (65%), and lead(IV) (35%) regardless of power settings. This observation indicates that the increased temperature due to higher power settings could alter the oxidation states of certain metals. We noted that many metals were in their lesser toxic states; however, inhaling these metals may still pose health risks. 
    more » « less
    Free, publicly-accessible full text available July 15, 2025
  5. Flat bands that do not merely arise from weak interactions can produce exotic physical properties, such as superconductivity or correlated many-body effects. The quantum metric can differentiate whether flat bands will result in correlated physics or are merely dangling bonds. A potential avenue for achieving correlated flat bands involves leveraging geometrical constraints within specific lattice structures, such as the kagome lattice; however, materials are often more complex. In these cases, quantum geometry becomes a powerful indicator of the nature of bands with small dispersions. We present a simple, soft-chemical processing route to access a flat band with an extended quantum metric below the Fermi level. By oxidizing Ni-kagome material Cs2Ni3S4to CsNi3S4, we see a two orders of magnitude drop in the room temperature resistance. However, CsNi3S4is still insulating, with no evidence of a phase transition. Using experimental data, density functional theory calculations, and symmetry analysis, our results suggest the emergence of a correlated insulating state of unknown origin. 
    more » « less
    Free, publicly-accessible full text available September 20, 2025
  6. Subangstrom resolution has long been limited to aberration-corrected electron microscopy, where it is a powerful tool for understanding the atomic structure and properties of matter. Here, we demonstrate electron ptychography in an uncorrected scanning transmission electron microscope (STEM) with deep subangstrom spatial resolution down to 0.44 angstroms, exceeding the conventional resolution of aberration-corrected tools and rivaling their highest ptychographic resolutions​. Our approach, which we demonstrate on twisted two-dimensional materials in a widely available commercial microscope, far surpasses prior ptychographic resolutions (1 to 5 angstroms) of uncorrected STEMs. We further show how geometric aberrations can create optimized, structured beams for dose-efficient electron ptychography. Our results demonstrate that expensive aberration correctors are no longer required for deep subangstrom resolution. 
    more » « less