skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jiang, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Subangstrom resolution has long been limited to aberration-corrected electron microscopy, where it is a powerful tool for understanding the atomic structure and properties of matter. Here, we demonstrate electron ptychography in an uncorrected scanning transmission electron microscope (STEM) with deep subangstrom spatial resolution down to 0.44 angstroms, exceeding the conventional resolution of aberration-corrected tools and rivaling their highest ptychographic resolutions​. Our approach, which we demonstrate on twisted two-dimensional materials in a widely available commercial microscope, far surpasses prior ptychographic resolutions (1 to 5 angstroms) of uncorrected STEMs. We further show how geometric aberrations can create optimized, structured beams for dose-efficient electron ptychography. Our results demonstrate that expensive aberration correctors are no longer required for deep subangstrom resolution.

     
    more » « less
    Free, publicly-accessible full text available February 23, 2025
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. The recent COVID-19 pandemic has propelled the field of aerosol science to the forefront, particularly the central role of virus-laden respiratory droplets and aerosols. The pandemic has also highlighted the critical need, and value for, an information bridge between epidemiological models (that inform policymakers to develop public health responses) and within-host models (that inform the public and health care providers how individuals develop respiratory infections). Here, we review existing data and models of generation of respiratory droplets and aerosols, their exhalation and inhalation, and the fate of infectious droplet transport and deposition throughout the respiratory tract. We then articulate how aerosol transport modeling can serve as a bridge between and guide calibration of within-host and epidemiological models, forming a comprehensive tool to formulate and test hypotheses about respiratory tract exposure and infection within and between individuals. 
    more » « less
  5. null (Ed.)
    Abstract Accurate theoretical predictions of desired properties of materials play an important role in materials research and development. Machine learning (ML) can accelerate the materials design by building a model from input data. For complex datasets, such as those of crystalline compounds, a vital issue is how to construct low-dimensional representations for input crystal structures with chemical insights. In this work, we introduce an algebraic topology-based method, called atom-specific persistent homology (ASPH), as a unique representation of crystal structures. The ASPH can capture both pairwise and many-body interactions and reveal the topology-property relationship of a group of atoms at various scales. Combined with composition-based attributes, ASPH-based ML model provides a highly accurate prediction of the formation energy calculated by density functional theory (DFT). After training with more than 30,000 different structure types and compositions, our model achieves a mean absolute error of 61 meV/atom in cross-validation, which outperforms previous work such as Voronoi tessellations and Coulomb matrix method using the same ML algorithm and datasets. Our results indicate that the proposed topology-based method provides a powerful computational tool for predicting materials properties compared to previous works. 
    more » « less
  6. Abstract We study the ground state properties of the Hubbard model on three-leg triangular cylinders using large-scale density-matrix renormalization group simulations. At half-filling, we identify an intermediate gapless spin liquid phase, which has one gapless spin mode and algebraic spin–spin correlations but exponential decay scalar chiral–chiral correlations, between a metallic phase at weak coupling and Mott insulating dimer phase at strong interaction. Upon light doping the gapless spin liquid, the system exhibits power-law charge-density-wave (CDW) correlations but short-range single-particle, spin–spin, and chiral–chiral correlations. Similar to CDW correlations, the superconducting correlations also decay in power-law but oscillate in sign as a function of distance, which is consistent with the striped pair-density wave. When further doping the gapless spin liquid phase or doping the dimer order phase, another phase takes over, which has similar CDW correlations but all other correlations decay exponentially. 
    more » « less
  7. In this paper, we numerically study a class of solutions with spiraling singularities in vorticity for two-dimensional, inviscid, compressible Euler systems, where the initial data have an algebraic singularity in vorticity at the origin. These are different from the multi- dimensional Riemann problems widely studied in the literature. Our computations provide numerical evidence of the existence of initial value problems with multiple solutions, thus revealing a fundamental obstruction toward the well-posedness of the governing equations. The compressible Euler equations are solved using the positivity-preserving discontinuous Galerkin method. 
    more » « less