skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jin, Fei-Fei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tropical cyclones (TCs) are among the most devastating natural hazards for coastal regions, and their response to human activities has broad socio-economic relevance. So far, how TC responds to climate change mitigation remains unknown, complicating the design of adaptation policies. Using net-zero and negative carbon emission experiments, we reveal a robust hemisphere-asymmetric hysteretic TC response to CO2reduction. During the decarbonization phase, the Northern Hemisphere TC frequency continues to decrease for several more decades, while the Southern Hemisphere oceans abruptly shifts to a stormier state, with the timescales depending on mitigation details. Such systematic changes are largely attributed to the planetary-scale reorganization of vertical wind shear and midlevel upward motion associated with the hysteretic southward migration of the Intertropical Convergence Zone, underpinned by the Atlantic Meridional Overturning Circulation and El Niño-like mean state changes. The hemispheric contrast in TC response suggests promising benefits for most of the world’s population from human action to mitigate greenhouse gas warming, but it may also exacerbate regional socioeconomic disparities, for example by putting more pressure on small open-ocean island states in the Southern Hemisphere to adapt to TC risks. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Although the tropical intraseaonal variability (TISV), as the most important predictability sources for subseasonal-to-seasonal (S2S) prediction, is dominated by Madden-Julian oscillation (MJO), its significant fraction does not always share the canonical MJO features, especially when the convective activity arrives at Maritime Continent. In this study, using principal oscillation pattern (POP) analysis on the combined fields of daily equatorial convection and zonal wind, two distinct leading TISV modes with relatively slower e-folding decay rates are identified. One is an oscillatory mode with the period of 51 days and e-folding time of 19 days, capturing the eastward propagating (EP) feature of the canonical MJO. The other is a non-oscillatory damping mode with e-folding time of 13.6 days, capturing a standing dipole (SD) with convection anomalies centered over the Maritime Continent and tropical central Pacific, respectively. Compared to the EP mode, the leading moisture anomalies at low level to the east of convection center are diminish for the SD mode, and instead, the strong negative anomalies of moisture and subsidence motion emerge in the tropical central Pacific area, which may be responsible for the distinct propagation features. Without filtering methods used, timeseries of the two POPs could be applied to the real-time monitoring of EP and SD events in the phase-space diagram. The two modes can serve as the simple and objective approach for a better characterization for diverse natures of TISV beyond the canonical MJO description, which may further shed light on dynamics of the TISV and its predictability. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  3. Free, publicly-accessible full text available December 1, 2025
  4. El Niño–Southern Oscillation (ENSO) is the leading mode of climate interannual variability, with large socioeconomical and environmental impacts, potentially increasing with climate change. Improving its understanding may shed further light on its predictability. Here we revisit the two main conceptual models for explaining ENSO cyclic nature, namely, the recharge oscillator (RO) and the advective–reflective delayed oscillator (DO). Some previous studies have argued that these two models capture similar physical processes. Yet, we show here that they actually capture two distinct roles of ocean wave dynamics in ENSO’s temperature tendency equation, using observations, reanalyses, and Climate Model Intercomparison Project (CMIP) models. The slow recharge/discharge process mostly influences central-eastern Pacific by favoring warmer equatorial undercurrent and equatorial upwelling, while the 6-month delayed advective–reflective feedback process dominates in the western-central Pacific. We thus propose a hybrid recharge delayed oscillator (RDO) that combines these two distinct processes into one conceptual model, more realistic than the RO or DO alone. The RDO eigenvalues (frequency and growth rate) are highly sensitive to the relative strengths of the recharge/discharge and delayed negative feedbacks, which have distinct dependencies to mean state. Combining these two feedbacks explains most of ENSO frequency diversity among models. Thanks to the two different spatial patterns involved, the RDO can even capture ENSO spatiotemporal diversity and complexity. We also develop a fully nonlinear and seasonal RDO, even more robust and realistic, investigating each nonlinear term. The great RDO sensitivity may explain the observed and simulated richness in ENSO’s characteristics and predictability. 
    more » « less
  5. Abstract The intricate currents of the Northwest Pacific Ocean, with strong manifestations along the westside rim, connect tropical and subtropical gyres and significantly influence East Asian and global climates. The El Niño/Southern Oscillation (ENSO) originates in the tropical Pacific Ocean and disrupts this ocean circulation system. However, the spatiotemporal dependence of the impact of ENSO events has yet to be elucidated because of the complexities of both ENSO events and circulation systems, as well as the increased availability of observational data. We thus combined altimeter and drifter observations to demonstrate the distinct tropical and subtropical influences of the circulation system on ENSO diversity. During El Niño years, the North Equatorial Current, North Equatorial Countercurrent, Mindanao Current, Indonesian Throughflow, and the subtropical Kuroshio Current and its Extension region exhibit strengthening, while the tropical Kuroshio Current weakens. The tropical impact is characterized by sea level changes in the warm pool, whereas the subtropical influence is driven by variations in the wind stress curl. The tropical and subtropical influences are amplified during the Centra Pacific El Niño years compared to the Eastern Pacific El Niño years. As the globe warms, these impacts are anticipated to intensify. Thus, strengthening observation systems and refining climate models are essential for understanding and projecting the enhancing influences of ENSO on the Northwest Pacific Oceanic circulation. 
    more » « less
  6. Abstract El Niño–Southern Oscillation (ENSO), the dominant mode of interannual variability in the tropical Pacific, is well known to affect the extratropical climate via atmospheric teleconnections. Extratropical atmospheric variability may in turn influence the occurrence of ENSO events. The winter North Pacific Oscillation (NPO), as the secondary dominant mode of atmospheric variability over the North Pacific, has been recognized as a potential precursor for ENSO development. This study demonstrates that the preexisting winter NPO signal is primarily excited by sea surface temperature (SST) anomalies in the equatorial western–central Pacific. During ENSO years with a preceding winter NPO signal, which accounts for approximately 60% of ENSO events observed in 1979–2021, significant SST anomalies emerge in the equatorial western–central Pacific in the preceding autumn and winter. The concurrent presence of local convection anomalies can act as a catalyst for NPO-like atmospheric circulation anomalies. In contrast, during other ENSO years, significant SST anomalies are not observed in the equatorial western–central Pacific during the preceding winter, and correspondingly, the NPO signal is absent. Ensemble simulations using an atmospheric general circulation model driven by observed SST anomalies in the tropical western–central Pacific can well reproduce the interannual variability of observed NPO. Therefore, an alternative explanation for the observed NPO–ENSO relationship is that the preceding winter NPO is a companion to ENSO development, driven by the precursory SST signal in the equatorial western–central Pacific. Our results suggest that the lagged relationship between ENSO and the NPO involves a tropical–extratropical two-way coupling rather than a purely stochastic forcing of the extratropical atmosphere on ENSO. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  7. While the prominent influence of El Niño‐Southern Oscillation (ENSO) on the Indian Ocean Oscillation (IOD) is widely recognized, intricate relationships between them are often invoked that introduce challenges into seasonal predictions. Previous studies have shown that different flavors of El Niño exhibit distinct associations with the IOD. In this study, we demonstrate that La Niña's teleconnection to the IOD is primarily controlled by its longitudinal position. Westward‐displaced La Niña events tend to produce stronger negative convection anomalies in the central Pacific and more pronounced Walk Circulation anomalies, thereby triggering strong negative IOD events. In contrast, eastward‐displaced La Niña events are usually accompanied by feeble convection response due to the excessively cold conditions in the cold tongue, yielding insignificant IOD response. The pivotal role of La Niña's longitudinal position on the IOD's response is realistically reproduced by targeted pacemaker experiments, providing new insights into inter‐basin climate connections. 
    more » « less
  8. The El Niño–Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill, yet, quantifying the sources of skilful predictions is a long-standing challenge. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible, limiting our understanding of the dynamics underpinning the advancements. Here we show that an extended nonlinear recharge oscillator (XRO) model shows skilful ENSO forecasts at lead times up to 16–18 months, better than global climate models and comparable to the most skilful artificial intelligence forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and ENSO’s seasonally modulated interactions with other modes of variability in the global oceans. The intrinsic enhancement of ENSO’s long-range forecast skill is traceable to the initial conditions of other climate modes by means of their memory and interactions with ENSO and is quantifiable in terms of these modes’ contributions to ENSO amplitude. Reforecasts using the XRO trained on climate model output show that reduced biases in both model ENSO dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The XRO framework’s holistic treatment of ENSO’s global multi-timescale interactions highlights promising targets for improving ENSO simulations and forecasts. 
    more » « less
    Free, publicly-accessible full text available June 27, 2025
  9. Abstract In observations, the boreal winter El Niño—Southern Oscillation (ENSO) phase-locking phenomenon is evident in the central-eastern Pacific. In the far eastern equatorial Pacific (FEP) and South American coastal regions, however, the peak of sea surface temperature anomalies (SSTA) tends to occur in the boreal summer, with fewer winter peak events. By separating the direct ENSO forcing from the FEP SSTA, we found that the summer peak preference is contributed by the residual SSTA component, while the ENSO forcing provides only a small probability of winter peak. The dynamics of FEP SSTA phase-locking in observations and its biases in the climate models are investigated by adopting a linear stochastic-dynamical model. In observations, the summer phase-locking of FEP SSTA is controlled by the seasonal modulation of the SSTA damping process. In contrast, in the climate models the strength of FEP SSTA phase-locking is much smaller than observed due to the overly negative SSTA damping rate. 
    more » « less
  10. Abstract The Pacific Meridional Mode (PMM) has long been associated with extra‐tropical air‐sea coupling processes, which are thought to influence the development of El Niño‐Southern Oscillation (ENSO). Here we show that the PMM on seasonal to interannual timescales is closely associated with a newly proposed tropical mode known as the ENSO Combination mode (C‐mode), which arises from the nonlinear interaction between ENSO and the background annual cycle in the deep tropics. The PMM exhibits a remarkable resemblance with the C‐mode in atmospheric patterns, spectral characteristics, and local impacts. Based on a simple Hasselmann‐type model, we further demonstrate that the C‐mode‐related atmospheric anomalies can effectively drive PMM‐like sea surface temperature anomalies. As the C‐mode captures seasonally modulated ENSO characteristics, the seasonal‐to‐interannual PMM variability could naturally establish a connection with ENSO, thereby offering an alternative explanation for the observed relationship between PMM and ENSO. 
    more » « less