skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 15, 2026

Title: A Recharge-Oscillator Model for ENSO Diversity Derived from the Zebiak–Cane Framework
Abstract The existence of multiple types of El Niño–Southern Oscillation (ENSO), termed ENSO diversity, has been well documented, and its mechanism is under active investigation. In this study, an extended recharge-oscillator model for ENSO diversity is derived from first principles based on the Zebiak–Cane framework. The model consists of three independent variables: the eastern Pacific (EP) sea surface temperature anomaly (SSTA), the central Pacific (CP) SSTA, and the basin-averaged equatorial thermocline fluctuation. Formulations of various thermodynamic and dynamical processes, both linear and nonlinear, are individually derived and then combined to yield the model equations. This approach allows model verification against the observation at the process level. The model-simulated ENSO reproduces the observed ENSO amplitude, asymmetry, and phase locking. Irregular occurrences of multiple ENSO types similar to those identified in the observation are also successfully simulated. This minimalistic conceptual model serves as a promising tool for the process-oriented diagnosis of ENSO and benefits our basic understanding of ENSO diversity. Sensitivity simulations confirm the essential role of nonlinear processes in ENSO asymmetry and diversity.  more » « less
Award ID(s):
2219257
PAR ID:
10639467
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorology Society
Date Published:
Journal Name:
Journal of Climate
Volume:
38
Issue:
16
ISSN:
0894-8755
Page Range / eLocation ID:
4003 to 4021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study examines historical simulations of ENSO in the E3SM-1-0, CESM2, and GFDL-CM4 climate models, provided by three leading U.S. modeling centers as part of the Coupled Model Intercomparison Project phase 6 (CMIP6). These new models have made substantial progress in simulating ENSO’s key features, including: amplitude; timescale; spatial patterns; phase-locking; spring persistence barrier; and recharge oscillator dynamics. However, some important features of ENSO are still a challenge to simulate. In the central and eastern equatorial Pacific, the models’ weaker-than-observed subsurface zonal current anomalies and zonal temperature gradient anomalies serve to weaken the nonlinear zonal advection of subsurface temperatures, leading to insufficient warm/cold asymmetry of ENSO’s sea surface temperature anomalies (SSTA). In the western equatorial Pacific, the models’ excessive simulated zonal SST gradients amplify their zonal temperature advection, causing their SSTA to extend farther west than observed. The models underestimate both ENSO’s positive dynamic feedbacks (due to insufficient zonal wind stress responses to SSTA) and its thermodynamic damping (due to insufficient convective cloud shading of eastern Pacific SSTA during warm events); compensation between these biases leads to realistic linear growth rates for ENSO, but for somewhat unrealistic reasons. The models also exhibit stronger-than-observed feedbacks onto eastern equatorial Pacific SSTAs from thermocline depth anomalies, which accelerates the transitions between events and shortens the simulated ENSO period relative to observations. Implications for diagnosing and simulating ENSO in climate models are discussed. 
    more » « less
  2. Abstract In observations, the boreal winter El Niño—Southern Oscillation (ENSO) phase-locking phenomenon is evident in the central-eastern Pacific. In the far eastern equatorial Pacific (FEP) and South American coastal regions, however, the peak of sea surface temperature anomalies (SSTA) tends to occur in the boreal summer, with fewer winter peak events. By separating the direct ENSO forcing from the FEP SSTA, we found that the summer peak preference is contributed by the residual SSTA component, while the ENSO forcing provides only a small probability of winter peak. The dynamics of FEP SSTA phase-locking in observations and its biases in the climate models are investigated by adopting a linear stochastic-dynamical model. In observations, the summer phase-locking of FEP SSTA is controlled by the seasonal modulation of the SSTA damping process. In contrast, in the climate models the strength of FEP SSTA phase-locking is much smaller than observed due to the overly negative SSTA damping rate. 
    more » « less
  3. The El Niño-Southern Oscillation (ENSO) phenomenon features rich sea surface temperature (SST) spatial pattern variations dominated by the Central Pacific (CP) and Eastern Pacific (EP) patterns during its warm phase. Understanding such ENSO pattern diversity has been a subject under extensive research activity. To provide a framework for unveiling the fundamental dynamics of ENSO diversity, an intermediate coupled model based on the Cane-Zebiak-type framework, named RCZ, is established in this study. Compared with the original Cane-Zebiak model, RCZ consists of revised model formulation and well-tuned parameterization schemes. All model components are carefully validated against the observations via the standalone mode, in which the observed anomalous SST (wind stress) forcing is prescribed to drive the atmospheric (oceanic) component. The superiority of RCZ’s model components over those in the original Cane-Zebiak model is evidenced by their better performance in simulating the observations. Coupled simulation with RCZ satisfactorily reproduces aspects of the observed ENSO characteristics, including the spatial pattern, phase-locking, amplitude asymmetry, and, particularly, ENSO diversity/bi-modality. RCZ serves as a promising tool for studying dynamics of ENSO diversity as it resolves most of the relevant processes proposed in the literature, including atmospheric nonlinear convective heating, oceanic nonlinear dynamical heating, and the ENSO/westerly wind burst interaction. 
    more » « less
  4. Abstract Understanding the impact of the Indian Ocean Dipole (IOD) on El Niño-Southern Oscillation (ENSO) is important for climate prediction. By analyzing observational data and performing Indian and Pacific Ocean pacemaker experiments using a state-of-the-art climate model, we find that a positive IOD (pIOD) can favor both cold and warm sea surface temperature anomalies (SSTA) in the tropical Pacific, in contrast to the previously identified pIOD-El Niño connection. The diverse impacts of the pIOD on ENSO are related to SSTA in the Seychelles-Chagos thermocline ridge (SCTR; 60°E-85°E and 7°S-15°S) as part of the warm pole of the pIOD. Specifically, a pIOD with SCTR warming can cause warm SSTA in the southeast Indian Ocean, which induces La Niña-like conditions in the tropical Pacific through interbasin interaction processes associated with a recently identified climate phenomenon dubbed the “Warm Pool Dipole”. This study identifies a new pIOD-ENSO relationship and examines the associated mechanisms. 
    more » « less
  5. null (Ed.)
    Abstract The El Niño-Southern Oscillation (ENSO) results from the instability of and also modulates the strength of the tropical-Pacific cold tongue. While climate models reproduce observed ENSO amplitude relatively well, the majority still simulates its asymmetry between warm (El Niño) and cold (La Niña) phases very poorly. The causes of this major deficiency and consequences thereof are so far not well understood. Analysing both reanalyses and climate models, we here show that simulated ENSO asymmetry is largely proportional to subsurface nonlinear dynamical heating (NDH) along the equatorial Pacific thermocline. Most climate models suffer from too-weak NDH and too-weak linear dynamical ocean-atmosphere coupling. Nevertheless, a sizeable subset (about 1/3) having relatively realistic NDH shows that El Niño-likeness of the equatorial-Pacific warming pattern is linearly related to ENSO amplitude change in response to greenhouse warming. Therefore, better simulating the dynamics of ENSO asymmetry potentially reduces uncertainty in future projections. 
    more » « less