skip to main content


Search for: All records

Creators/Authors contains: "Jin, Lihua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 1, 2025
  2. This study reports rate-dependent measurements and relaxation of stress, director rotation, and shear strain in main-chain nematic LCEs subjected to uniaxial tension with various initial directors, which is further explained by an analytical model.

     
    more » « less
    Free, publicly-accessible full text available October 25, 2024
  3. Viscoelastic shells subjected to a pressure loading exhibit rich and complex time-dependent responses. Here we focus on the phenomenon of pseudo-bistability, i.e. a viscoelastic shell can stay inverted when pressure is removed, and snap to its natural shape after a delay time. We model and explain the mechanism of pseudo-bistability with a viscoelastic shell model. It combines the small strain, moderate rotation shell theory with the standard linear solid as the viscoelastic constitutive law, and is applicable to shells with arbitrary axisymmetric shapes. As a case study, we investigate the pseudo-bistable behaviour of viscoelastic ellipsoidal shells. Using the proposed model, we successfully predict buckling of a viscoelastic ellipsoidal shell into its inverted configuration when subjected to an instantaneous pressure, creeping when the pressure is held, staying inverted after the pressure is removed, and eventually snapping back after a delay time. The stability transition of the shell from a monostable, temporarily bistable and eventually back to the monostable state is captured by examining the evolution of the instantaneous pressure–volume change relation at different time of the holding and releasing process. A systematic parametric study is conducted to investigate the effect of geometry, viscoelastic properties and loading history on the pseudo-bistable behaviour. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'. 
    more » « less
  4. Abstract In response to external stimuli, such as heat, light, or magnetic fields, stimuli-responsive soft materials can change their current configuration to a new equilibrium state through non-equilibrium kinetic processes, including reaction, diffusion, and viscoelastic relaxation, which generates novel spatiotemporal shape-morphing behavior. Using a photothermal shape memory polymer (SMP) cantilever beam as a model system, this work analytically, numerically, and experimentally studies its non-equilibrium kinetic processes and spatiotemporal bending under light illumination. We establish a thermomechanical model for SMPs capturing the concurrent non-equilibrium processes of heat transfer and viscoelastic relaxation, which induces inhomogeneous temperature and strain distributions through the thickness of the beam, resulting in its bending and unbending. By varying the key dimensionless parameters, we theoretically and experimentally observe different types of bending dynamics. Moreover, our theory takes into consideration changes in the angles of incidence caused by extensive beam bending, and demonstrates that this effect can dramatically delay the bending due to reduction of the effective light intensity, which is further validated experimentally. This work demonstrates programmable and predictable spatiotemporal morphing of SMPs, and provides design guidelines for SMP morphing structures and robots. 
    more » « less
  5. Abstract

    Soft and stretchable electronics have emerged as highly promising tools for biomedical diagnosis and biological studies, as they interface intimately with the human body and other biological systems. Most stretchable electronic materials and devices, however, still have Young’s moduli orders of magnitude higher than soft bio-tissues, which limit their conformability and long-term biocompatibility. Here, we present a design strategy of soft interlayer for allowing the use of existing stretchable materials of relatively high moduli to versatilely realize stretchable devices with ultralow tissue-level moduli. We have demonstrated stretchable transistor arrays and active-matrix circuits with moduli below 10 kPa—over two orders of magnitude lower than the current state of the art. Benefiting from the increased conformability to irregular and dynamic surfaces, the ultrasoft device created with the soft interlayer design realizes electrophysiological recording on an isolated heart with high adaptability, spatial stability, and minimal influence on ventricle pressure. In vivo biocompatibility tests also demonstrate the benefit of suppressing foreign-body responses for long-term implantation. With its general applicability to diverse materials and devices, this soft-interlayer design overcomes the material-level limitation for imparting tissue-level softness to a variety of bioelectronic devices.

     
    more » « less
  6. Abstract

    The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces1. Whereas traditional combinatorial deposition methods can generate material libraries2,3, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid–liquid or solid–solid phases4–6. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.

     
    more » « less
  7. Formation of desired three-dimensional (3D) shapes from flat thin sheets with programmed non-uniform deformation profiles is an effective strategy to create functional 3D structures. Liquid crystal elastomers (LCEs) are of particular use in programmable shape morphing due to their ability to undergo large, reversible, and anisotropic deformation in response to a stimulus. Here we consider a rectangular monodomain LCE thin sheet divided into one high- and one low-temperature strip, which we dub a ‘bistrip’. Upon activation, a discontinuously patterned, anisotropic in-plane stretch profile is generated, and induces buckling of the bistrip into a rolled shape with a transitional bottle neck. Based on the non-Euclidean plate theory, we derive an analytical model to quantitatively capture the formation of the rolled shapes from a flat bistrip with finite thickness by minimizing the total elastic energy involving both stretching and bending energies. Using this analytical model, we identify the critical thickness at which the transition from the unbuckled to buckled configuration occurs. We further study the influence of the anisotropy of the stretch profile on the rolled shapes by first converting prescribed metric tensors with different anisotropy to a unified metric tensor embedded in a bistrip of modified geometry, and then investigating the effect of each parameter in this unified metric tensor on the rolled shapes. Our analysis sheds light on designing shape morphing of LCE thin sheets, and provides quantitative predictions on the 3D shapes that programmed LCE sheets can form upon activation for various applications. 
    more » « less