skip to main content

Search for: All records

Creators/Authors contains: "Jin, Xin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 7, 2023
  2. Free, publicly-accessible full text available September 1, 2023
  3. Free, publicly-accessible full text available May 1, 2023
  4. Programmable networks are enabling a new class of applications that leverage the line-rate processing capability and on-chip register memory of the switch data plane. Yet the status quo is focused on developing approaches that share the register memory statically. We present NetVRM, a network management system that supports dynamic register memory sharing between multiple concurrent applications on a programmable network and is readily deployable on commodity programmable switches. NetVRM provides a virtual register memory abstraction that enables applications to share the register memory in the data plane, and abstracts away the underlying details. In principle, NetVRM supports any memory allocation algorithm given the virtual register memory abstraction. It also provides a default memory allocation algorithm that exploits the observation that applications have diminishing returns on additional memory. NetVRM provides an extension of P4, P4VRM, for developing applications with virtual register memory, and a compiler to generate data plane programs and control plane APIs. Testbed experiments show that NetVRM generalizes to a diverse variety of applications, and that its utility-based dynamic allocation policy outperforms static resource allocation. Specifically, it improves the mean satisfaction ratio (i.e., the fraction of a network application’s lifetime that it meets its utility target) by 1.6–2.2× undermore »a range of workloads.« less
    Free, publicly-accessible full text available April 4, 2023
  5. Abstract This paper concerns the design and rigorous in silico evaluation of a closed-loop hemorrhage resuscitation algorithm with blood pressure (BP) as controlled variable. A lumped-parameter control design model relating volume resuscitation input to blood volume (BV) and BP responses was developed and experimentally validated. Then, three alternative adaptive control algorithms were developed using the control design model: (i) model reference adaptive control (MRAC) with BP feedback, (ii) composite adaptive control (CAC) with BP feedback, and (iii) CAC with BV and BP feedback. To the best of our knowledge, this is the first work to demonstrate model-based control design for hemorrhage resuscitation with readily available BP as feedback. The efficacy of these closed-loop control algorithms was comparatively evaluated as well as compared with an empiric expert knowledge-based algorithm based on 100 realistic virtual patients created using a well-established physiological model of cardiovascular (CV) hemodynamics. The in silico evaluation results suggested that the adaptive control algorithms outperformed the knowledge-based algorithm in terms of both accuracy and robustness in BP set point tracking: the average median performance error (MDPE) and median absolute performance error (MDAPE) were significantly smaller by >99% and >91%, and as well, their interindividual variability was significantly smaller bymore »>88% and >94%. Pending in vivo evaluation, model-based control design may advance the medical autonomy in closed-loop hemorrhage resuscitation.« less
  6. We introduce perturbative spatial frequency domain imaging (p-SFDI) for fast two-dimensional (2D) mapping of the optical properties and physiological characteristics of skin and cutaneous microcirculation using spatially modulated visible light. Compared to the traditional methods for recovering 2D maps through a pixel-by-pixel inversion, p-SFDI significantly shortens parameter retrieval time, largely avoids the random fitting errors caused by measurement noise, and enhances the image reconstruction quality. The efficacy of p-SFDI is demonstrated byin vivoimaging forearm of one healthy subject, recovering the 2D spatial distribution of cutaneous hemoglobin concentration, oxygen saturation, scattering properties, the melanin content, and the epidermal thickness over a large field of view. Furthermore, the temporal and spatial variations in physiological parameters under the forearm reactive hyperemia protocol are revealed, showing its applications in monitoring temporal and spatial dynamics.

  7. Network planning is critical to the performance, reliability and cost of web services. This problem is typically formulated as an Integer Linear Programming (ILP) problem. Today's practice relies on hand-tuned heuristics from human experts to address the scalability challenge of ILP solvers. In this paper, we propose NeuroPlan, a deep reinforcement learning (RL) approach to solve the network planning problem. This problem involves multi-step decision making and cost minimization, which can be naturally cast as a deep RL problem. We develop two important domain-specific techniques. First, we use a graph neural network (GNN) and a novel domain-specific node-link transformation for state encoding, in order to handle the dynamic nature of the evolving network topology during planning decision making. Second, we leverage a two-stage hybrid approach that first uses deep RL to prune the search space and then uses an ILP solver to find the optimal solution. This approach resembles today's practice, but avoids human experts with an RL agent in the first stage. Evaluation on real topologies and setups from large production networks demonstrates that NeuroPlan scales to large topologies beyond the capability of ILP solvers, and reduces the cost by up to 17% compared to hand-tuned heuristics.