Using hindcasts produced by a coupled climate model, this study evaluates whether the model can forecast the observed spatiotemporal complexity in the El Niño−Southern Oscillation (ENSO) during the period 1982−2011: the eastern Pacific (EP), central Pacific‐I (CP‐I) and ‐II (CP‐II) types of El Niño, and the multi‐year evolution events of El Niño occurred in 1986–1988 (i.e., 1986/87/88 El Niño) and La Niña occurred in 1998–2000 (i.e., 1998/99/00 La Niña). With regard to the spatial complexity, it is found that the CP‐I type of El Niño is the easiest to hindcast, the CP‐II is second, and the EP is most difficult to hindcast as its amplitude is significantly underestimated in the model used here. The model deficiency in hindcasting the EP El Niño is related to a warm bias in climatological sea surface temperatures (SSTs) in the tropical eastern Pacific. This warm bias is related to model biases in the strengths of the Pacific Walker circulation and South Pacific high, both of which are notably weaker than observed. As for the temporal complexity, the model successfully hindcasts the multi‐year evolution of the 1998/99/00 La Niña but fails to accurately hindcast the 1986/87/88 El Niño. This contrasting model performance in hindcastingmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available July 12, 2024 -
Abstract El Niño-Southern Oscillation (ENSO) exhibits diverse characteristics in spatial pattern, peak intensity, and temporal evolution. Here we develop a three-region multiscale stochastic model to show that the observed ENSO complexity can be explained by combining intraseasonal, interannual, and decadal processes. The model starts with a deterministic three-region system for the interannual variabilities. Then two stochastic processes of the intraseasonal and decadal variation are incorporated. The model can reproduce not only the general properties of the observed ENSO events, but also the complexity in patterns (e.g., Central Pacific vs. Eastern Pacific events), intensity (e.g., 10–20 year reoccurrence of extreme El Niños), and temporal evolution (e.g., more multi-year La Niñas than multi-year El Niños). While conventional conceptual models were typically used to understand the dynamics behind the common properties of ENSO, this model offers a powerful tool to understand and predict ENSO complexity that challenges our understanding of the twenty-first century ENSO.Free, publicly-accessible full text available December 1, 2023
-
Abstract The Indian and Pacific Oceans surround the Maritime Continent (MC). Major modes of sea surface temperature variability in both oceans, including the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO), can strongly affect precipitation on the MC. The prevalence of fires in the MC is closely associated with precipitation amount and terrestrial water storage in September and October. Precipitation and terrestrial water storage, which is a measurement of hydrological drought conditions, are significantly modulated by Indian Ocean Dipole (IOD) and El Niño events. We utilize long-term datasets to study the combined effects of ENSO and the IOD on MC precipitation during the past 100 years (1900–2019) and find that the reductions in MC precipitation and terrestrial water storage are more pronounced during years when El Niño and a positive phase of the IOD (pIOD) coincided. The combined negative effects are produced mainly through an enhanced reduction of upward motion over the MC. Coincident El Niño-pIOD events have occurred more frequently after 1965. However, climate models do not project a higher occurrence of coincident El Niño-pIOD events in a severely warming condition, implying that not the global warming but the natural variability might be the leading cause of this phenomenon.Free, publicly-accessible full text available December 1, 2023
-
Abstract To better understand the diverse temporal evolutions of observed El Niño‒Southern Oscillation (ENSO) events, which are characterized as single- or multi-year, this study examines similar events in a 2200-year-long integration of Community Earth System Model, version 1. Results show that selective activation of inter- and intra-basin climate interactions (together, pantropical climate interactions) controls ENSO’s evolution pattern. When ENSO preferentially activates inter-basin interactions with tropical Indian and/or Atlantic Oceans, it introduces negative feedbacks into the ENSO phase, resulting in single-year evolution. When ENSO preferentially activates intra-basin interactions with subtropical North Pacific, it causes positive feedbacks, producing multi-year evolution. Three key factors (developing-season intensity, pre-onset Pacific condition, and maximum zonal location) and their thresholds, which determine whether inter- or intra-basin interactions are activated and whether an event will become a single- or multi-year event, are identified. These findings offer a way to predict ENSO’s evolution pattern by incorporating the controlling role of pantropical climate interactions.
-
Stable glasses (SGs) are formed through surface-mediated equilibration (SME) during physical vapor deposition (PVD). Unlike intermolecular interactions, the role of intramolecular degrees of freedom in this process remains unexplored. Here, using experiments and coarse-grained molecular dynamics simulations, we demonstrate that varying dihedral rotation barriers of even a single bond, in otherwise isomeric molecules, can strongly influence the structure and stability of PVD glasses. These effects arise from variations in the degree of surface mobility, mobility gradients, and mobility anisotropy, at a given deposition temperature ( T dep ). At high T dep , flexible molecules have access to more configurations, which enhances the rate of SME, forming isotropic SGs. At low T dep , stability is achieved by out of equilibrium aging of the surface layer. Here, the poor packing of rigid molecules enhances the rate of surface-mediated aging, producing stable glasses with layered structures in a broad range of T dep . In contrast, the dynamics of flexible molecules couple more efficiently to the glass layers underneath, resulting in reduced mobility and weaker mobility gradients, producing unstable glasses. Independent of stability, the flattened shape of flexible molecules can also promote in-plane orientational order at low T dep . Thesemore »
-
Abstract Using observational data and model hindcasts produced by a coupled climate model, we examine the response of the East Asian winter monsoon (EAWM) to three types of El Niño: eastern Pacific (EP) and central Pacific I (CP-I) and II (CP-II) El Niños. The observational analysis shows that all three El Niño types weaken the EAWM with varying degrees of impact. The EP El Niño has the largest weakening effect, while the CP-II El Niño has the second largest, and the CP-I El Niño has the smallest. We find that diverse El Niño types impact the EAWM by altering the responses of two anomalous anticyclones during El Niño mature winter: the western North Pacific anticyclone (WNPAC) and Kuroshio anticyclone (KAC). The WNPAC responses are controlled by the Gill response and Indian Ocean warming processes that both respond to the eastern-to-central tropical Pacific precipitation anomalies. The KAC responses are controlled by a poleward wave propagation responding to the northwestern tropical Pacific precipitation anomalies. We find that the model hindcasts significantly underestimate the weakening effect during the EP and CP-II El Niños. These underestimations are related to a model deficiency in which it produces a too-weak WNPAC response during the EP Elmore »