skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jin, Ying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Conformal prediction builds marginally valid prediction intervals that cover the unknown outcome of a randomly drawn test point with a prescribed probability. However, in practice, data-driven methods are often used to identify specific test unit(s) of interest, requiring uncertainty quantification tailored to these focal units. In such cases, marginally valid conformal prediction intervals may fail to provide valid coverage for the focal unit(s) due to selection bias. This article presents a general framework for constructing a prediction set with finite-sample exact coverage, conditional on the unit being selected by a given procedure. The general form of our method accommodates arbitrary selection rules that are invariant to the permutation of the calibration units and generalizes Mondrian Conformal Prediction to multiple test units and non-equivariant classifiers. We also work out computationally efficient implementation of our framework for a number of realistic selection rules, including top-K selection, optimization-based selection, selection based on conformal p-values, and selection based on properties of preliminary conformal prediction sets. The performance of our methods is demonstrated via applications in drug discovery and health risk prediction. 
    more » « less
  2. Before deploying outputs from foundation models in high-stakes tasks, it is imperative to ensure that they align with human values. For instance, in radiology report generation, reports generated by a vision-language model must align with human evaluations before their use in medical decision-making. This paper presents Conformal Alignment, a general framework for identifying units whose outputs meet a user-specified alignment criterion. It is guaranteed that on average, a prescribed fraction of selected units indeed meet the alignment criterion, regardless of the foundation model or the data distribution. Given any pre-trained model and new units with model-generated outputs, Conformal Alignment leverages a set of reference data with ground-truth alignment status to train an alignment predictor. It then selects new units whose predicted alignment scores surpass a data-dependent threshold, certifying their corresponding outputs as trustworthy. Through applications to question answering and radiology report generation, we demonstrate that our method is able to accurately identify units with trustworthy outputs via lightweight training over a moderate amount of reference data. En route, we investigate the informativeness of various features in alignment prediction and combine them with standard models to construct the alignment predictor. 
    more » « less
    Free, publicly-accessible full text available September 26, 2025
  3. Graph Neural Networks (GNNs) are powerful machine learning prediction models on graph-structured data. However, GNNs lack rigorous uncertainty estimates, limiting their reliable deployment in settings where the cost of errors is significant. We propose conformalized GNN (CF-GNN), extending conformal prediction (CP) to graph-based models for guaranteed uncertainty estimates. Given an entity in the graph, CF-GNN produces a prediction set/interval that provably contains the true label with pre-defined coverage probability (e.g. 90%). We establish a permutation invariance condition that enables the validity of CP on graph data and provide an exact characterization of the test-time coverage. Besides valid coverage, it is crucial to reduce the prediction set size/interval length for practical use. We observe a key connection between non-conformity scores and network structures, which motivates us to develop a topology-aware output correction model that learns to update the prediction and produces more efficient prediction sets/intervals. Extensive experiments show that CF-GNN achieves any pre-defined target marginal coverage while significantly reducing the prediction set/interval size by up to 74% over the baselines. It also empirically achieves satisfactory conditional coverage over various raw and network features. 
    more » « less
  4. We propose a model-free framework for sensitivity analysis of individual treatment effects (ITEs), building upon ideas from conformal inference. For any unit, our procedure reports the Γ-value, a number which quantifies the minimum strength of confounding needed to explain away the evidence for ITE. Our approach rests on the reliable predictive inference of counterfactuals and ITEs in situations where the training data are confounded. Under the marginal sensitivity model of [Z. Tan, J. Am. Stat. Assoc. 101, 1619-1637 (2006)], we characterize the shift between the distribution of the observations and that of the counterfactuals. We first develop a general method for predictive inference of test samples from a shifted distribution; we then leverage this to construct covariate-dependent prediction sets for counterfactuals. No matter the value of the shift, these prediction sets (resp. approximately) achieve marginal coverage if the propensity score is known exactly (resp. estimated). We describe a distinct procedure also attaining coverage, however, conditional on the training data. In the latter case, we prove a sharpness result showing that for certain classes of prediction problems, the prediction intervals cannot possibly be tightened. We verify the validity and performance of the methods via simulation studies and apply them to analyze real datasets. 
    more » « less