skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson, Jay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Romain Maggiolo, Nicolas André (Ed.)
    As space plasmas are highly collisionless and involve several temporal and spatial scales, understanding the physical mechanisms responsible for energy transport between these scales is a challenge. Ideally, to study cross-scale space plasma processes, simultaneous multi-spacecraft measurements in three different scales (fluid, ion and electron) would be required together with adequate instrumental temporal resolution. In this chapter we discuss cross-scale energy transport mechanisms mainly focusing on velocity shear driven Kelvin-Helmholtz instability and resulting secondary instabilities and processes, e.g, magnetic reconnection, kinetic magnetosonic waves and kinetic Alfven waves/mode conversion. 
    more » « less
  2. null (Ed.)
  3. Boudreaux, Edmond A.; Meyers, Maureen; Johnson, Jay K. (Ed.)
    The Oliver and Orchard sites are very different in terms of time and space but have both produced thumbnail scarpers which are quite similar in terms of raw material and technology of production. Oliver is located near the Mississippi River in the Yazoo Basin of northwestern Mississippi and produced European trade goods dating to the early 17th century. Orchard is a Chickasaw site located in the Black Prairie of northeastern Mississippi and dates to the decade beginning in 1730. This paper explores the technological and metric similarity to suggest that tool function dictated production technology and form to a large extent. A reflectance spectroscopy analysis of the raw material used in make the tools from both sites demonstrates that similar chert was used in make these tools and the majority of that chert came from the Burlington formation which outcrops in Missouri and Illinois. Oneoto phase sites in that region produce nearly identical thumbnail scrapers made from that same chert and the possibility that Oliver represents and intrusion of Oneoto peoples into the Yazoo Basin is considered. The Chickasaw use of Burlington chert raises equally interesting possibilities including direct procurement in a region which had been cleared out during the slave raids that preceded the occupation at the Orchard site. 
    more » « less
  4. null (Ed.)
    Abstract A new drilling system was developed by the US Ice Drilling Program (IDP) to rapidly drill through overlying ice to collect subglacial rock cores. The Agile Sub-Ice Geological (ASIG) Drill system is capable of drilling up to 700 m of ice in a continuous manner. Intermittent ice core samples can be taken as needed. Ten-plus meters of subglacial bedrock and unconsolidated, frozen sediment cores can be drilled with wireline core retrieval. The functionality of the drill system was demonstrated in 2016–17 at the Pirrit Hills, Antarctica where 8 m of high-quality, continuous granite core was retrieved beneath 150 m of ice. The particulars of the drill system development, features and performance are discussed. 
    more » « less
  5. null (Ed.)
    Abstract Significant upgrades to the Rapid Air Movement (RAM) Drill were developed and tested by the US Ice Drilling Program in 2016 through 2020 for the U.S. National Science Foundation. The design of the system leverages the existing infrastructure of the RAM Drill with the goal of greatly reducing the logistical burden of deploying the drill while maintaining the ability to drill an access hole in firn and ice to 100 m in 40 min or less. In this paper, characteristics of the drill are described, along with a description of the drill performance during the testing at Raven Camp in Greenland and at WAIS Divide Camp in Antarctica. 
    more » « less
  6. null (Ed.)
    Abstract The Winkie Drill is an agile, commercially available rock coring system. The U.S. Ice Drilling Program has modified a Winkie Drill for subglacial rock and ice/rock interface coring, as well as drilling and coring access holes through ice. The original gasoline engine was replaced with an electric motor though the two-speed gear reducer and Unipress hand feed system were maintained. Using standard aluminum AW34 drill rod (for 33.5 mm diameter core), the system has a depth capability of 120 m. The drill uses forward fluid circulation in a closed loop system. The drilling fluid is Isopar K, selected for favorable properties in polar environment. When firn or snow is present at the drill site, casing with an inflatable packer can be deployed to contain the drill fluid. The Winkie Drill will operate from sea level to high altitudes and operation results in minimal environmental impact. The drill can be easily and quickly assembled and disassembled in the field by two people. All components can be transported by Twin Otter or helicopter to the field site. 
    more » « less
  7. null (Ed.)
    Abstract Over the course of the 2014/15 and 2015/16 austral summer seasons, the South Pole Ice Core project recovered a 1751 m deep ice core at the South Pole. This core provided a high-resolution record of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. The drilling and core processing were completed using the new US Intermediate Depth Drill system, which was designed and built by the US Ice Drilling Program at the University of Wisconsin–Madison. In this paper, we present and discuss the setup, operation, and performance of the drill system. 
    more » « less