skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Drilling operations for the South Pole Ice Core (SPICEcore) project
Abstract Over the course of the 2014/15 and 2015/16 austral summer seasons, the South Pole Ice Core project recovered a 1751 m deep ice core at the South Pole. This core provided a high-resolution record of paleoclimate conditions in East Antarctica during the Holocene and late Pleistocene. The drilling and core processing were completed using the new US Intermediate Depth Drill system, which was designed and built by the US Ice Drilling Program at the University of Wisconsin–Madison. In this paper, we present and discuss the setup, operation, and performance of the drill system.  more » « less
Award ID(s):
1836328 1142646
PAR ID:
10215549
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Annals of Glaciology
ISSN:
0260-3055
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract An intermediate-depth (1751 m) ice core was drilled at the South Pole between 2014 and 2016 using the newly designed US Intermediate Depth Drill. The South Pole ice core is the highest-resolution interior East Antarctic ice core record that extends into the glacial period. The methods used at the South Pole to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the National Science Foundation Ice Core Facility (NSF-ICF), and the methods used to process and sample the ice at the NSF-ICF are described. The South Pole ice core exhibited minimal brittle ice, which was likely due to site characteristics and, to a lesser extent, to drill technology and core handling procedures. 
    more » « less
  2. null (Ed.)
    Abstract A new drilling system was developed by the US Ice Drilling Program (IDP) to rapidly drill through overlying ice to collect subglacial rock cores. The Agile Sub-Ice Geological (ASIG) Drill system is capable of drilling up to 700 m of ice in a continuous manner. Intermittent ice core samples can be taken as needed. Ten-plus meters of subglacial bedrock and unconsolidated, frozen sediment cores can be drilled with wireline core retrieval. The functionality of the drill system was demonstrated in 2016–17 at the Pirrit Hills, Antarctica where 8 m of high-quality, continuous granite core was retrieved beneath 150 m of ice. The particulars of the drill system development, features and performance are discussed. 
    more » « less
  3. null (Ed.)
    Abstract The Winkie Drill is an agile, commercially available rock coring system. The U.S. Ice Drilling Program has modified a Winkie Drill for subglacial rock and ice/rock interface coring, as well as drilling and coring access holes through ice. The original gasoline engine was replaced with an electric motor though the two-speed gear reducer and Unipress hand feed system were maintained. Using standard aluminum AW34 drill rod (for 33.5 mm diameter core), the system has a depth capability of 120 m. The drill uses forward fluid circulation in a closed loop system. The drilling fluid is Isopar K, selected for favorable properties in polar environment. When firn or snow is present at the drill site, casing with an inflatable packer can be deployed to contain the drill fluid. The Winkie Drill will operate from sea level to high altitudes and operation results in minimal environmental impact. The drill can be easily and quickly assembled and disassembled in the field by two people. All components can be transported by Twin Otter or helicopter to the field site. 
    more » « less
  4. null (Ed.)
    Abstract Significant upgrades to the Rapid Air Movement (RAM) Drill were developed and tested by the US Ice Drilling Program in 2016 through 2020 for the U.S. National Science Foundation. The design of the system leverages the existing infrastructure of the RAM Drill with the goal of greatly reducing the logistical burden of deploying the drill while maintaining the ability to drill an access hole in firn and ice to 100 m in 40 min or less. In this paper, characteristics of the drill are described, along with a description of the drill performance during the testing at Raven Camp in Greenland and at WAIS Divide Camp in Antarctica. 
    more » « less
  5. null (Ed.)
    Abstract The intermixed thermal and structural framework of cold firn, water-saturated firn and ice layers in Greenland's percolation zone can be challenging to penetrate with core drills. Here, we present our experiences using a hot water drill for research on the firn layer of the percolation zone. We built and deployed a lightweight and easily transportable system for drilling a transect of ~15 cm diameter boreholes through the full firn column thickness, to depths exceeding 100 m. An instrumented drill stem provides a scientific measurement of the firn properties while drilling. The system was successful at gaining rapid access to the firn column with mixed wet and cold conditions, was easily transported to the site and across the glacier surface, and required a small field crew to operate. The boreholes are well suited for in situ investigations of firn processes in Greenland percolation zone. 
    more » « less