skip to main content

Search for: All records

Creators/Authors contains: "Johnston, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y 2 BaNiO 5 using Ni L 3 -edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y 2 BaNiO 5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations.
    Free, publicly-accessible full text available December 1, 2023
  2. Abstract
    <p>Data files for the manuscript &#34;Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet&#34;.</p> <p>Reference: A. Nag, A. Nocera, S. Agrestini, M. Garcia-Fernandez, A. C. Walters, Sang-Wook Cheong, S. Johnston, and Ke-Jin Zhou, &#34;Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet&#34;. arXiv:2111.03625 (2021).</p> <p>Preprint: arXiv:2111.03625 (2021), URL:</p>
  3. Abstract Investigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang–Rice singlet exciton. Utilizing trRIXS measurements at the O K -edge, and in combination with model calculations, we probe the short-range spin correlations in the frustrated spin chain material CuGeO 3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems.
    Free, publicly-accessible full text available December 1, 2022
  4. Free, publicly-accessible full text available November 1, 2022
  5. ABSTRACT We report observed and derived timing parameters for three millisecond pulsars (MSPs) from observations collected with the Parkes 64-m telescope, Murriyang. The pulsars were found during reprocessing of archival survey data by Mickaliger et al. One of the new pulsars (PSR J1546–5925) has a spin period P = 7.8 ms and is isolated. The other two (PSR J0921–5202 with P = 9.7 ms and PSR J1146–6610 with P = 3.7 ms) are in binary systems around low-mass (${\gt}0.2\, {\rm M}_{\odot }$) companions. Their respective orbital periods are 38.2 and 62.8 d. While PSR J0921–5202 has a low orbital eccentricity e = 1.3 × 10−5, in keeping with many other Galactic MSPs, PSR J1146–6610 has a significantly larger eccentricity, e = 7.4 × 10−3. This makes it a likely member of a group of eccentric MSP–helium white dwarf binary systems in the Galactic disc whose formation is poorly understood. Two of the pulsars are co-located with previously unidentified point sources discovered with the Fermi satellite’s Large Area Telescope, but no γ-ray pulsations have been detected, likely due to their low spin-down powers. We also show that, particularly in terms of orbital diversity, the current sample of MSPs is far from complete and is subject to a number of selection biases.
  6. Charge-density waves (CDWs) are a ubiquitous form of electron density modulation in cuprate superconductors. Unveiling the nature of quasistatic CDWs and their dynamical excitations is crucial for understanding their origin––similar to the study of antiferromagnetism in cuprates. However, dynamical CDW excitations remain largely unexplored due to the limited availability of suitable experimental probes. Here, using resonant inelastic X-ray scattering, we observe dynamical CDW excitations in Bi2Sr2LaCuO6+δ (Bi2201) superconductors through its interference with the lattice. The distinct anomalies of the bond-buckling and the bond-stretching phonons allow us to draw a clear picture of funnel-shaped dynamical CDW excitations in Bi2201. Our results of the interplay between CDWs and the phonon anomalies shed light on the nature of CDWs in cuprates.
  7. Free, publicly-accessible full text available April 1, 2023