Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Defense mechanisms against network-level attacks are commonly based on the use of cryptographic techniques, such as lengthy message authentication codes (MAC) that provide data integrity guarantees. However, such mechanisms require significant resources (both computational and network bandwidth), which prevents their continuous use in resource-constrained cyber-physical systems (CPS). Recently, it was shown how physical properties of controlled systems can be exploited to relax these stringent requirements for systems where sensor measurements and actuator commands are transmitted over a potentially compromised network; specifically, that merely intermittent use of data authentication (i.e., at occasional time points during system execution), can still provide strongmore »
-
We consider the problem of network-based attacks, such as Man-in-the-Middle attacks, on standard state estimators. To ensure graceful control degradation in the presence of attacks, existing results impose very strict integrity requirements on the number of noncompromised sensors. We study the effects of sporadic data integrity enforcement, such as message authentication, on control performance under stealthy attacks. We show that even with sporadic data integrity guarantees, the attacker cannot introduce an unbounded state estimation error while remaining stealthy. We present a design-time framework to derive safe integrity enforcement policies, and illustrate its use; we show that with even 20% ofmore »
-
Existing design techniques for providing security guarantees against network-based attacks in cyber-physical systems (CPS) are based on continuous use of standard cryptographic tools to ensure data integrity. This creates an apparent conflict with common resource limitations in these systems, given that, for instance, lengthy message authentication codes (MAC) introduce significant overheads. We present a framework to ensure both timing guarantees for real-time network messages and Quality-of-Control (QoC) in the presence of network-based attacks. We exploit physical properties of controlled systems to relax constant integrity enforcement requirements, and show how the problem of feasibility testing of intermittently authenticated real-time messages canmore »