skip to main content

Search for: All records

Creators/Authors contains: "Jung, Malte F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increased use of algorithms to support decision making raises questions about whether people prefer algorithmic or human input when making decisions. Two streams of research on algorithm aversion and algorithm appreciation have yielded contradicting results. Our work attempts to reconcile these contradictory findings by focusing on the framings of humans and algorithms as a mechanism. In three decision making experiments, we created an algorithm appreciation result (Experiment 1) as well as an algorithm aversion result (Experiment 2) by manipulating only the description of the human agent and the algorithmic agent, and we demonstrated how different choices of framings can lead to inconsistent outcomes in previous studies (Experiment 3). We also showed that these results were mediated by the agent's perceived competence, i.e., expert power. The results provide insights into the divergence of the algorithm aversion and algorithm appreciation literature. We hope to shift the attention from these two contradicting phenomena to how we can better design the framing of algorithms. We also call the attention of the community to the theory of power sources, as it is a systemic framework that can open up new possibilities for designing algorithmic decision support systems.
  2. AI-mediated communication (AI-MC) represents a new paradigm where communication is augmented or generated by an intelligent system. As AI-MC becomes more prevalent, it is important to understand the effects that it has on human interactions and interpersonal relationships. Previous work tells us that in human interactions with intelligent systems, misattribution is common and trust is developed and handled differently than in interactions between humans. This study uses a 2 (successful vs. unsuccessful conversation) x 2 (standard vs. AI-mediated messaging app) between subjects design to explore whether AI mediation has any effects on attribution and trust. We show that the presence of AI-generated smart replies serves to increase perceived trust between human communicators and that, when things go awry, the AI seems to be perceived as a coercive agent, allowing it to function like a moral crumple zone and lessen the responsibility assigned to the other human communicator. These findings suggest that smart replies could be used to improve relationships and perceptions of conversational outcomes between interlocutors. Our findings also add to existing literature regarding perceived agency in smart agents by illustrating that in this type of AI-MC, the AI is considered to have agency only when communication goes awry.
  3. Background Inhibitory control, or inhibition, is one of the core executive functions of humans. It contributes to our attention, performance, and physical and mental well-being. Our inhibitory control is modulated by various factors and therefore fluctuates over time. Being able to continuously and unobtrusively assess our inhibitory control and understand the mediating factors may allow us to design intelligent systems that help manage our inhibitory control and ultimately our well-being. Objective The aim of this study is to investigate whether we can assess individuals’ inhibitory control using an unobtrusive and scalable approach to identify digital markers that are predictive of changes in inhibitory control. Methods We developed InhibiSense, an app that passively collects the following information: users’ behaviors based on their phone use and sensor data, the ground truths of their inhibition control measured with stop-signal tasks (SSTs) and ecological momentary assessments (EMAs), and heart rate information transmitted from a wearable heart rate monitor (Polar H10). We conducted a 4-week in-the-wild study, where participants were asked to install InhibiSense on their phone and wear a Polar H10. We used generalized estimating equation (GEE) and gradient boosting tree models fitted with features extracted from participants’ phone use and sensor data tomore »predict their stop-signal reaction time (SSRT), an objective metric used to measure an individual’s inhibitory control, and identify the predictive digital markers. Results A total of 12 participants completed the study, and 2189 EMAs and SST responses were collected. The results from the GEE models suggest that the top digital markers positively associated with an individual’s SSRT include phone use burstiness (P=.005), the mean duration between 2 consecutive phone use sessions (P=.02), the change rate of battery level when the phone was not charged (P=.04), and the frequency of incoming calls (P=.03). The top digital markers negatively associated with SSRT include the standard deviation of acceleration (P<.001), the frequency of short phone use sessions (P<.001), the mean duration of incoming calls (P<.001), the mean decibel level of ambient noise (P=.007), and the percentage of time in which the phone was connected to the internet through a mobile network (P=.001). No significant correlation between the participants’ objective and subjective measurement of inhibitory control was found. Conclusions We identified phone-based digital markers that were predictive of changes in inhibitory control and how they were positively or negatively associated with a person’s inhibitory control. The results of this study corroborate the findings of previous studies, which suggest that inhibitory control can be assessed continuously and unobtrusively in the wild. We discussed some potential applications of the system and how technological interventions can be designed to help manage inhibitory control.« less
  4. We describe a physical interactive system for human-robot collaborative design (HRCD) consisting of a tangible user interface (TUI) and a robotic arm that simultaneously manipulates the TUI with the human designer. In an observational study of 12 participants exploring a complex design problem together with the robot, we find that human designers have to negotiate both the physical and the creative space with the machine. They also often ascribe social meaning to the robot's pragmatic behaviors. Based on these findings, we propose four considerations for future HRCD systems: managing the shared workspace, communicating preferences about design goals, respecting different design styles, and taking into account the social meaning of design acts.