skip to main content


Search for: All records

Creators/Authors contains: "KATS, Mikhail"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Dielectric mirrors comprising thin‐film multilayers are widely used in optical experiments because they can achieve substantially higher reflectance compared to metal mirrors. Here, potential problems are investigated that can arise when dielectric mirrors are used at oblique incidence, in particular for focused beams. It is found that light beams reflected from dielectric mirrors can experience lateral beam shifts, beam‐shape distortion, and depolarization, and these effects have a strong dependence on wavelength, incident angle, and incident polarization. Because vendors of dielectric mirrors typically do not share the particular layer structure of their products, several dielectric‐mirror stacks are designed and simulated, and then the lateral beam shift from two commercial dielectric mirrors and one coated metal mirror is also measured. This paper brings awareness of the tradeoffs between dielectric mirrors and front‐surface metal mirrors in certain optics experiments, and it is suggested that vendors of dielectric mirrors provide information about beam shifts, distortion, and depolarization when their products are used at oblique incidence.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  2. Free, publicly-accessible full text available October 18, 2024
  3. We present a modeling method that incorporates full-wave electromagnetic simulations and radiation force calculations to evaluate the performance of grating chips for compact megneto-optical traps (MOTs). 
    more » « less
  4. We report on progress towards a single atom, single photon source using a fiber connected optical chip. Quantum experiments with cold atoms are burdened by the complexity of the experimental apparatus. Using fiber connectorized optics and a grating MOT suitable for cooling Rb atoms we fabricate a pre-aligned device usable as a single photon source for quantum communication experiments. The device integrates a grating MOT with a single beam dipole trap produced by a fiber and GRIN lens combination. MOT atoms are loaded into the dipole trap and then used as a source of single photons which are collected by the same optical fiber. We will report on details of the fabrication of the optical chip, experimental characterization, and progress towards generating high purity single photons. 
    more » « less
  5. null (Ed.)
    Abstract Optical bottle beams can be used to trap atoms and small low-index particles. We introduce a figure of merit (FoM) for optical bottle beams, specifically in the context of optical traps, and use it to compare optical bottle-beam traps obtained by three different methods. Using this FoM and an optimization algorithm, we identified the optical bottle-beam traps based on a Gaussian beam illuminating a metasurface that are superior in terms of power efficiency than existing approaches. We numerically demonstrate a silicon metasurface for creating an optical bottle-beam trap. 
    more » « less
  6. Low-dimensional materials with chain-like (one-dimensional) or layered (two-dimensional) structures are of significant interest due to their anisotropic electrical, optical, and thermal properties. One material with a chain-like structure, BaTiS3 (BTS), was recently shown to possess giant in-plane optical anisotropy and glass-like thermal conductivity. To understand the origin of these effects, it is necessary to fully characterize the optical, thermal, and electronic anisotropy of BTS. To this end, BTS crystals with different orientations (a- and c-axis orientations) were grown by chemical vapor transport. X-ray absorption spectroscopy was used to characterize the local structure and electronic anisotropy of BTS. Fourier transform infrared reflection/transmission spectra show a large in-plane optical anisotropy in the a-oriented crystals, while the c-axis oriented crystals were nearly isotropic in-plane. BTS platelet crystals are promising uniaxial materials for infrared optics with their optic axis parallel to the c-axis. The thermal conductivity measurements revealed a thermal anisotropy of ∼4.5 between the c- and a-axis. Time-domain Brillouin scattering showed that the longitudinal sound speed along the two axes is nearly the same, suggesting that the thermal anisotropy is a result of different phonon scattering rates. 
    more » « less