Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2023
-
The central question studied in this paper is Rényi Differential Privacy (RDP) guarantees for general discrete local randomizers in the shuffle privacy model. In the shuffle model, each of the 𝑛 clients randomizes its response using a local differentially private (LDP) mechanism and the untrusted server only receives a random permutation (shuffle) of the client responses without association to each client. The principal result in this paper is the first direct RDP bounds for general discrete local randomization in the shuffle pri- vacy model, and we develop new analysis techniques for deriving our results which could be of independent interest.more »Free, publicly-accessible full text available November 12, 2022
-
The minimum mean-square error (MMSE) achievable by optimal estimation of a random variable S given another random variable T is of much interest in a variety of statistical contexts. Motivated by a growing interest in auditing machine learning models for unintended information leakage, we propose a neural network-based estimator of this MMSE. We derive a lower bound for the MMSE based on the proposed estimator and the Barron constant associated with the conditional expectation of S given T . Since the latter is typically unknown in practice, we derive a general bound for the Barron constant that produces order optimalmore »Free, publicly-accessible full text available October 1, 2022
-
Abstract Privacy protection is paramount in conducting health research. However, studies often rely on data stored in a centralized repository, where analysis is done with full access to the sensitive underlying content. Recent advances in federated learning enable building complex machine-learned models that are trained in a distributed fashion. These techniques facilitate the calculation of research study endpoints such that private data never leaves a given device or healthcare system. We show—on a diverse set of single and multi-site health studies—that federated models can achieve similar accuracy, precision, and generalizability, and lead to the same interpretation as standard centralized statisticalmore »Free, publicly-accessible full text available December 1, 2022
-
We consider the problem of estimating sparse discrete distributions under local differential privacy (LDP) and communication constraints. We characterize the sample complexity for sparse estimation under LDP constraints up to a constant factor, and the sample complexity under communication constraints up to a logarithmic factor. Our upper bounds under LDP are based on the Hadamard Response, a private coin scheme that requires only one bit of communication per user. Under communication constraints we propose public coin schemes based on random hashing functions. Our tight lower bounds are based on recently proposed method of chi squared contractions.
-
We consider a distributed empirical risk minimization (ERM) optimization problem with communication efficiency and privacy requirements, motivated by the federated learn- ing (FL) framework. We propose a distributed communication-efficient and local differentially private stochastic gradient descent (CLDP-SGD) algorithm and analyze its communication, privacy, and convergence trade-offs. Since each iteration of the CLDP- SGD aggregates the client-side local gradients, we develop (optimal) communication-efficient schemes for mean estimation for several lp spaces under local differential privacy (LDP). To overcome performance limitation of LDP, CLDP-SGD takes advantage of the inherent privacy amplification provided by client sub- sampling and data subsampling at each se-more »