skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kang, Seokkoo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Abstract Prediction of statistical properties of the turbulent flow in large‐scale rivers is essential for river flow analysis. The large‐eddy simulation (LES) provides a powerful tool for such predictions; however, it requires a very long sampling time and demands significant computing power to calculate the turbulence statistics of riverine flows. In this study, we developed encoder‐decoder convolutional neural networks (CNNs) to predict the first‐ and second‐order turbulence statistics of the turbulent flow of large‐scale meandering rivers using instantaneous LES results. We train the CNNs using a data set obtained from LES of the flood flow in a large‐scale river with three bridge piers—a training testbed. Subsequently, we employed the trained CNNs to predict the turbulence statistics of the flood flow in two different meandering rivers and bridge pier arrangements—validation testbed rivers. The CNN predictions for the validation testbed river flow were compared with the simulation results of a separately done LES to evaluate the performance of the developed CNNs. We show that the trained CNNs can successfully produce turbulence statistics of the flood flow in the large‐scale rivers, that is, the validation testbeds. 
    more » « less