skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kang, Wenjun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Novak, Erik; Wilcox, Christopher C. (Ed.)
  2. We propose an on-axis deflectometric system for the accurate measurement of freeform surfaces with large slope ranges. A miniature plane mirror is attached on the illumination screen to fold the optical path and achieve the on-axis deflectometric testing. Due to the existence of the miniature folding mirror, the deep-learning method is applied to recover the missing surface data in a single measurement. Low sensitivity to the calibration error of system geometry and high testing accuracy can be achieved with the proposed system. The feasibility and accuracy of the proposed system have been validated. The system is low in cost and simple in configuration, and it provides a feasible way for the flexible and general testing of freeform surfaces, with a significant potential of the application in on-machine testing. 
    more » « less
  3. On the demand of low-cost, lightweight, miniaturized, and integrated optical systems, precision lenslet arrays are widely used. Diamond turning is often used to fabricate lenslet arrays directly or molds that are used to mold lenslet arrays. In this paper, mainly by real-time monitoring position following error for slow tool servo, different fabrication parameters are quantitatively studied and optimized for actual fabrication, then by actual fabrication validation, uniform and high-fidelity surface topography across the actual whole lenslet array is achieved. The evaluated fabrication parameters include sampling strategy, inverse time feed, arc-length, etc. The study provides a quick, effective, and detailed reference for both convex and concave lenslet array cutting parameter selection. At the end, a smooth zonal machining strategy toolpath is demonstrated for fabricating concave lenslet arrays. 
    more » « less