skip to main content

Search for: All records

Creators/Authors contains: "Kang, Yuhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dynamic and steady-state aspects of wave propagation are deeply connected in lossless open systems ‎in which the scattering matrix is unitary. There is then an equivalence among the energy excited within ‎the medium through all channels, the Wigner time delay, which is the sum of dwell times in all ‎channels coupled to the medium, and the density of states. But these equivalences fall away in the ‎presence of material loss or gain. In this paper, we use microwave measurements, numerical ‎simulations, and theoretical analysis to discover the changing relationships among fundamental wave ‎properties with loss and gain, and their dependence upon dimensionality and spectral overlap. We ‎begin with the demonstrations that the transmission time in random 1D media is equal to the density ‎of states even in the presence of ultrastrong absorption and that its ensemble average is independent ‎of the strengths of scattering and absorption. In contrast, the Wigner time becomes imaginary in the ‎presence of loss, with real and imaginary parts that fall with absorption. In multichannel media, the ‎transmission time remains equal to the density of states and is independent of the scattering strength ‎in unitary systems but falls with absorption to a degree that increases with the strengths of absorption ‎and scattering, and the number of channels coupled to the medium. We show that the relationships ‎between key propagation variables in non-Hermitian systems can be understood in terms of the ‎singularities of the phase of the determinant of the transmission matrix. The poles of the transmission ‎matrix are the same as those of the scattering matrix, but the transmission zeros are fundamentally ‎different. Whereas the zeros of the scattering matrix are the complex conjugates of the poles, the ‎transmission zeros are topological: in unitary systems they occur only singly on the real axis or as ‎conjugate pairs. We follow the evolution and statistics of zeros in the complex plane as random ‎samples are deformed. The sensitivity of the spacing of zeros in the complex plane with deformation ‎of the sample has a square-root singularity at a zero point at which two single zeros and a complex ‎pair interconvert. The transmission time is a sum of Lorentzian functions associated with poles and ‎zeros. The sum over poles is the density of states with an average that is independent of scattering ‎and dissipation. But the sum over zeros changes with loss, gain, scattering strength and the number of ‎channels in ways that make it possible to control ultranarrow spectral features in transmission and ‎transmission time. We show that the field, including the contribution of the still coherent incident ‎wave, is a sum over modal partial fractions with amplitudes that are independent of loss and gain. The ‎energy excited may be expressed in terms of the resonances of the medium and is equal to the dwell ‎time even in the presence of loss or gain.‎ 
    more » « less
  2. Understanding vanishing transmission in Fano resonances in quantum systems and metamaterials and perfect and ultralow transmission in disordered media has advanced the knowledge and applications of wave interactions. Here, we use analytic theory and numerical simulations to understand and control the transmission and transmission time in complex systems by deforming a medium and adjusting the level of gain or loss. Unlike the zeros of the scattering matrix, the position and motion of the zeros of the determinant of the transmission matrix (TM) in the complex plane of frequency and field decay rate have robust topological properties. In systems without loss or gain, the transmission zeros appear either singly on the real axis or as conjugate pairs in the complex plane. As the structure is modified, two single zeros and a complex conjugate pair of zeros may interconvert when they meet at a square root singularity in the rate of change of the distance between the transmission zeros in the complex plane with sample deformation. The transmission time is the spectral derivative of the argument of the determinant of the TM. It is a sum over Lorentzian functions associated with the resonances of the medium, which is the density of states, and with the zeros of the TM. Transmission vanishes, and the transmission time diverges as zeros are brought near the real axis. Monitoring the transmission and transmission time when two zeros are close may open new possibilities for ultrasensitive detection. 
    more » « less
  3. Abstract

    Most models of the COVID-19 pandemic in the United States do not consider geographic variation and spatial interaction. In this research, we developed a travel-network-based susceptible-exposed-infectious-removed (SEIR) mathematical compartmental model system that characterizes infections by state and incorporates inflows and outflows of interstate travelers. Modeling reveals that curbing interstate travel when the disease is already widespread will make little difference. Meanwhile, increased testing capacity (facilitating early identification of infected people and quick isolation) and strict social-distancing and self-quarantine rules are most effective in abating the outbreak. The modeling has also produced state-specific information. For example, for New York and Michigan, isolation of persons exposed to the virus needs to be imposed within 2 days to prevent a broad outbreak, whereas for other states this period can be 3.6 days. This model could be used to determine resources needed before safely lifting state policies on social distancing.

    more » « less
  4. The COVID-19 pandemic is a global threat presenting health, economic, and social challenges that continue to escalate. Metapopulation epidemic modeling studies in the susceptible–exposed–infectious–removed (SEIR) style have played important roles in informing public health policy making to mitigate the spread of COVID-19. These models typically rely on a key assumption on the homogeneity of the population. This assumption certainly cannot be expected to hold true in real situations; various geographic, socioeconomic, and cultural environments affect the behaviors that drive the spread of COVID-19 in different communities. What’s more, variation of intracounty environments creates spatial heterogeneity of transmission in different regions. To address this issue, we develop a human mobility flow-augmented stochastic SEIR-style epidemic modeling framework with the ability to distinguish different regions and their corresponding behaviors. This modeling framework is then combined with data assimilation and machine learning techniques to reconstruct the historical growth trajectories of COVID-19 confirmed cases in two counties in Wisconsin. The associations between the spread of COVID-19 and business foot traffic, race and ethnicity, and age structure are then investigated. The results reveal that, in a college town (Dane County), the most important heterogeneity is age structure, while, in a large city area (Milwaukee County), racial and ethnic heterogeneity becomes more apparent. Scenario studies further indicate a strong response of the spread rate to various reopening policies, which suggests that policy makers may need to take these heterogeneities into account very carefully when designing policies for mitigating the ongoing spread of COVID-19 and reopening.

    more » « less
  5. Abstract

    Understanding dynamic human mobility changes and spatial interaction patterns at different geographic scales is crucial for assessing the impacts of non-pharmaceutical interventions (such as stay-at-home orders) during the COVID-19 pandemic. In this data descriptor, we introduce a regularly-updated multiscale dynamic human mobility flow dataset across the United States, with data starting from March 1st, 2020. By analysing millions of anonymous mobile phone users’ visits to various places provided by SafeGraph, the daily and weekly dynamic origin-to-destination (O-D) population flows are computed, aggregated, and inferred at three geographic scales: census tract, county, and state. There is high correlation between our mobility flow dataset and openly available data sources, which shows the reliability of the produced data. Such a high spatiotemporal resolution human mobility flow dataset at different geographic scales over time may help monitor epidemic spreading dynamics, inform public health policy, and deepen our understanding of human behaviour changes under the unprecedented public health crisis. This up-to-date O-D flow open data can support many other social sensing and transportation applications.

    more » « less
  6. null (Ed.)
  7. null (Ed.)