Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work explores a novel approach for improving the sodium-ion battery performance of coal char using flash pyrolysis and an ether-based electrolyte. Coal char is an ultra-low cost hard carbon with promising application as an anode material in sodium-ion batteries. During flash pyrolysis, char is heated at 1000 °C/s in a drop-tube furnace to create a highly-irregular structure. The larger d-spacing and smaller closed micropore diameter of flash-pyrolyzed char increases anode capacity compared to traditional slow-pyrolyzed char electrodes. The sodium-ion battery anode performance of flash-pyrolyzed char is further improved using an ether-based electrolyte in place of the traditional ester-based electrolyte. Performance improvements include greater initial Coulombic efficiency (58% in ester- vs. 64% in ether-based electrolyte) and improved specific capacity in an ether-based electrolyte. Overall, the combination of flash pyrolysis and ether-based electrolyte increases the sodium-ion battery discharge capacity of coal char by over 50%, from 72.5 mAh g−1 (slow-pyrolyzed char in ester-based electrolyte) to 109.4 mAh g−1 (flash-pyrolyzed char in ether-based electrolyte) (50 mA g−1 discharge rate). The results highlight improvements that can be realized through flash pyrolysis of coal char for battery applications and the numerous processing advantages of flash vs. slow pyrolysis.more » « less
-
Electrochemical double-layer capacitors (EDLCs) provide high power density and long cycle life energy storage. This work examines the use of inexpensive, raw coal char as an electrode material for supercapacitors. The effect of electrolyte composition on the performance of coal char supercapacitors is explored for the first time to determine the relative contributions of double-layer capacitance vs. faradaic reactions on total charge storage. Six electrolytes are examined with coal char electrodes, including: four aqueous electrolytes (0.5 M H 2 SO 4 , 6 M KOH, 0.5 M Na 2 SO 4 , 4 M LiNO 3 ); a water-in-salt electrolyte using 13 m NaClO 4 ; and an ionic liquid electrolyte (1-butyl-3-methylimidazolium tetrafluoroborate in acetonitrile). Voltage range, specific capacitance, electrochemical impedance, and charge–discharge characteristics of the coal char in the different electrolytes are characterized. The results indicate that neutral aqueous, water-in-salt, and ionic liquid electrolytes present a charging/discharging process approaching ideal EDLC behavior. The study provides insight into the optimal electrolyte composition for use with coal char electrodes and contributes to the current understanding of electrode-electrolyte interactions in carbon supercapacitors.more » « less
-
Highlighting the role engineers have in solving community and global challenges has been shown to positively affect students' engineering identity development. Poor water quality and water scarcity have been recognized as a critical global issue by many organizations, including the United Nations. Students of all ages can relate to the importance of having drinkable water through their experiences with thirst, drought, floods, news stories, or just accidentally swallowing salt water while on holiday at a beach. This talk describes the development and implementation of a series of engineering education activities focused on water quality. These activities ranged from three-minute activities for community outreach events to week-long lessons for engineering freshmen. Younger students were able to readily recognize how using different types of filters and natural media can increase the clarity of water with particulate or color contamination. Middle and high school students were able to design and test filter set-ups and learn about the role of nanotechnology in water purification. They also developed analytical and data analysis skills through qualitative and quantitative water quality measurements. Freshman engineering students learned about the water industry, local and global water issues, and performed water quality sampling around their campuses using portable meters that log data via a cell phone app. The activities and results were then used to meet university-course outcomes related to the societal impacts of engineering, statistical analysis, plotting data, and written communication. By centering learning on a tangible and important engineering challenge, this work provides a flexible framework for learning and problem solving that can be tailored to the needs of students from different age groups and for different learning outcomes.more » « less
-
Nanosphere lithography (NSL) is a bottom‐up, self‐assembly approach that enables rapid, low‐cost patterning of nanoscale features. The practical application and scalability of NSL relies on the ability to achieve defect‐free nanosphere self‐assembly over large substrate areas. Self‐assembly methods for single‐layer nanosphere templates are typically evaluated using scanning electron microscopy (SEM) imaging, with literature reports focusing on maximum area of continuous nanosphere coverage. An alternative performance metric—namely, the percentage of nanospheres exhibiting perfect hexagonal close‐packing (%HCP)—is uniquely critical to NSL precision and repeatability. To enhance current methods of evaluating nanosphere self‐assembly, this work presents an SEM image analysis approach for rapidly quantifying packing defects in single‐layer nanospheres to determine %HCP. The method uses variations in SEM edge effect brightness to distinguish spheres with perfect packing from those in defect configurations or along edges. Comparison of image analysis program results with manual counting of nanospheres indicates that the program has a high degree of accuracy, with a mean error on the %HCP metric of +8.6% (absolute error). The results suggest that the present strategy offers a promising pathway to rapid evaluation of nanosphere self‐assembly for high‐precision NSL applications such as surface‐enhanced Raman scattering, photovoltaic cells, and nanogap electrodes.more » « less