Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Understanding and predicting the structure and evolution of coronal mass ejections (CMEs) in the heliosphere remains one of the most sought-after goals in heliophysics and space weather research. A powerful tool for improving current knowledge and capabilities consists of multispacecraft observations of the same event, which take place when two or more spacecraft fortuitously find themselves in the path of a single CME. Multiprobe events can not only supply useful data to evaluate the large-scale of CMEs from 1D in situ trajectories, but also provide additional constraints and validation opportunities for CME propagation models. In this work, we analyse and simulate the coronal and heliospheric evolution of a slow, streamer-blowout CME that erupted on 2021 September 23 and was encountered in situ by four spacecraft approximately equally distributed in heliocentric distance between 0.4 and 1 au. We employ the Open Solar Physics Rapid Ensemble Information modelling suite in ensemble mode to predict the CME arrival and structure in a hindcast fashion and to compute the ‘best-fitting’ solutions at the different spacecraft individually and together. We find that the spread in the predicted quantities increases with heliocentric distance, suggesting that there may be a maximum (angular and radial) separation between an inner and an outer probe beyond which estimates of the in situ magnetic field orientation (parametrized by flux rope model geometry) increasingly diverge. We discuss the importance of these exceptional observations and the results of our investigation in the context of advancing our understanding of CME structure and evolution as well as improving space weather forecasts.more » « less
-
Context.Coronal mass ejections (CMEs) are eruptions of plasma from the Sun that travel through interplanetary space and may encounter Earth. CMEs often enclose a magnetic flux rope (MFR), the orientation of which largely determines the CMEs’ geoeffectiveness. Current operational CME models do not model MFRs, but a number of research ones do, including the Open Solar Physics Rapid Ensemble Information (OSPREI) model. Aims.We report the sensitivity of OSPREI to a range of user-selected photospheric and coronal conditions. Methods.We modeled four separate CMEs observed in situ by Parker Solar Probe (PSP). We varied the input photospheric conditions using four input magnetograms (HMI Synchronic, HMI Synoptic, GONG Synoptic Zero-Point Corrected, and GONG ADAPT). To vary the coronal field reconstruction, we employed the Potential Field Source Surface (PFSS) model and varied its source-surface height in the range 1.5–3.0R⊙with 0.1R⊙increments. Results.We find that both the input magnetogram and PFSS source surface often affect the evolution of the CME as it propagates through the Sun’s corona into interplanetary space, and therefore the accuracy of the MFR prediction compared to in situ data at PSP. There is no obvious best combination of input magnetogram and PFSS source surface height. Conclusions.The OSPREI model is moderately sensitive to the input photospheric and coronal conditions. Based on where the source region of the CME is located on the Sun, there may be best practices when selecting an input magnetogram to use.more » « less
-
Magnetic flux ropes manifest as twisted bundles of magnetic field lines. They carry significant amounts of solar mass in the heliosphere. This paper underlines the need to advance our understanding of the fundamental physics of heliospheric flux ropes and provides the motivation to significantly improve the status quo of flux rope research through novel and requisite approaches. It briefly discusses the current understanding of flux rope formation and evolution, and summarizes the strategies that have been undertaken to understand the dynamics of heliospheric structures. The challenges and recommendations put forward to address them are expected to broaden the in-depth knowledge of our nearest star, its dynamics, and its role in its region of influence, the heliosphere.more » « less
-
Abstract Stealth coronal mass ejections (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic configuration and eruption dynamics is particularly problematic. In this article, we address this issue by undertaking the first attempt at predicting the magnetic fields of a stealth CME that erupted in 2020 June from the Earth-facing Sun. We estimate its source region with the aid of off-limb observations from a secondary viewpoint and photospheric magnetic field extrapolations. We then employ the Open Solar Physics Rapid Ensemble Information modeling suite to evaluate its early evolution and forward model its magnetic fields up to Parker Solar Probe, which detected the CME in situ at a heliocentric distance of 0.5 au. We compare our hindcast prediction with in situ measurements and a set of flux-rope reconstructions, obtaining encouraging agreement on arrival time, spacecraft-crossing location, and magnetic field profiles. This work represents a first step toward reliable understanding and forecasting of the magnetic configuration of stealth CMEs and slow streamer-blowout events.more » « less
An official website of the United States government
