Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 15, 2025
-
Kehtarnavaz, Nasser; Shirvaikar, Mukul V (Ed.)Recent diffusion-based generative models employ methods such as one-shot fine-tuning an image diffusion model for video generation. However, this leads to long video generation times and suboptimal efficiency. To resolve this long generation time, zero-shot text-to-video models eliminate the fine-tuning method entirely and can generate novel videos from a text prompt alone. While the zero-shot generation method greatly reduces generation time, many models rely on inefficient cross-frame attention processors, hindering the diffusion model’s utilization for real-time video generation. We address this issue by introducing more efficient attention processors to a video diffusion model. Specifically, we use attention processors (i.e. xFormers, FlashAttention, and HyperAttention) that are highly optimized for efficiency and hardware parallelization. We then apply these processors to a video generator and test with both older diffusion models such as Stable Diffusion 1.5 and newer, high-quality models such as Stable Diffusion XL. Our results show that using efficient attention processors alone can reduce generation time by around 25%, while not resulting in any change in video quality. Combined with the use of higher quality models, this use of efficient attention processors in zero-shot generation presents a substantial efficiency and quality increase, greatly expanding the video diffusion model’s application to real-time video generation.more » « less
An official website of the United States government

Full Text Available