skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khan, Sadik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Beauregard, Melissa S; Budge, Aaron S (Ed.)
    Climate change has been playing a crucial role in altering the precipitation patterns in the southern USA. States like Mississippi, Louisiana, and Alabama have seen increased numbers of extreme events like hurricanes, storms, and heavy rainfall. Therefore, rainfall-induced landslides have been very common in recent years. In Mississippi, due to the prevalence of highly expansive clay soil, slope failure has brought about a huge financial burden for the authority. In order to create resiliency in highway embankments, regular monitoring and early detection of landslide risks are important. The objective of the current study is to evaluate the landslide behavior of highway slopes under changed climatic conditions. One highway slope near Grenada, Mississippi, was selected for the study. The slope has a history of shallow landslide. Remote sensing technology like Light Detection and Ranging (LiDAR) has been utilized to compare the topographical surfaces in different seasons. Electrical Resistivity Imaging (ERI) was performed, and seasonal variations in subsurface moisture contents were obtained from the ERI profiles. In addition, rainwater data of the site location from available open sources were collected. Perched water zones have been detected through the ERI images when there were events of extreme rainfall. A drone mounted with an advanced LiDAR scanning system has been utilized to detect any trend of slope movement in the study site. The LiDAR scan gathered dense point cloud data to construct 3D surfaces and produce topographic maps of the slope. The integration of ERI and LiDAR provides a comprehensive understanding of the climate resilience of highway slopes in the face of climate change. 
    more » « less
    Free, publicly-accessible full text available February 27, 2026
  2. Blasch, Erik; Celik, Nurcin; Darema, Frederica; Metaxas, Dimitris (Ed.)
    Free, publicly-accessible full text available April 20, 2026
  3. Darema, Frederica; Blasch, Erik; Chatzoudis, Gerasimos (Ed.)
    Free, publicly-accessible full text available May 1, 2026
  4. Bioinspired slope improvements can achieve outcomes similar to traditional slope improvements for shallow slope failures, while incorporating plant material as a structural component and using a minimum of heavy equipment. Vetiver grass can mitigate the rain-induced slope instability of earthen infrastructure, such as levees, constructed using loess and clay soils. Vetiver grassroots can extend to depths greater than 3 m (10 ft), creating a new composite material with the grassroots and soil, thereby increasing shear strength to combat shallow slope failures. The objective of this study is to determine the feasibility of vetiver as a climate-resilient bioinspired slope stability improvement on a test levee constructed of loess in Vicksburg, Mississippi (MS). Vetiver was planted at 1 ft center-to-center intervals on a 9.1 m wide (30 ft) section of an approximately 12.2 m long (40 ft) downstream slope of a test levee and observed for 2.5 years. To consider the effect of extreme precipitation events, a finite element analysis was completed for a comparable clay slope using 500 year precipitation intensity–duration– frequency curves of Jackson, MS. Precipitation negatively impacts the collapsible and expansive nature of the local loess and clay, respectively. The results demonstrate that vetiver grass is a viable method to increase slope stability for earthen levees constructed with loess and clay, which are prevalent in Vicksburg and Jackson, respectively. Vetiver also holds promise as a climate resilient solution to combat raininduced shallow slope failures. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. The hydro-mechanical behavior of unsaturated soil, particularly expansive soil, is influenced significantly by cyclic wetting and drying. Understanding the soil parameters is crucial when evaluating the performance of infrastructures constructed on expansive clay. As a result of extreme rainfall events, highway slopes containing highly expansive Yazoo clay in Mississippi, U.S., become vulnerable to volume change. The phenomenon creates perched water zones within the slopes and poses a risk of slope failure. The soil-water characteristic curve (SWCC) defines the relationship between water content and soil suction, which can be obtained from different laboratory procedures. However, conventional laboratory methods have some limitations. To address this, various analytical and predictive models have been developed, but they can only offer estimates based on soil characteristics and lack seasonal variations occurring in field conditions. Studying seasonal SWCC through field measurements can help understand soil responses to changing moisture conditions. The current study utilized field data from six highway slopes in Mississippi and classified the data into different seasons: spring, summer, and fall. After obtaining van Genuchten parameters from the fitted curve for each season, the finite element method was applied to evaluate the parameters for accurate numerical analysis of infrastructures containing expansive clay. The study observed the variations in flow parameters with seasonal change that cannot be achieved when data from only one season is considered. The findings underscore the importance of field instrumentation data for developing SWCC and the significance of seasonal flow parameters in infrastructure design. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  6. An increase in precipitation due to climate change has given rise to the number of landslide occurrences. Vetiver, which is a perennial grass, is becoming increasingly popular all over the world as a vegetation-based soil bioengineering tool for preventing landslides. Sunshine Vetiver grass, also known as Chrysopogon zizanioides is noninvasive and does not compete with other indigenous plants growing in the area. Even though it is a tropical grass, Vetiver can grow in a wide range of climate conditions, including those that are quite harsh in terms of both soil and climate. The roots can grow up to 3 m in length in a dense bushy root network under optimal conditions. In this review, the authors have studied the impact of Vetiver on landslide mitigation as a climate-adaptive slope repair tool based on the research undertaken so far. Furthermore, the authors have addressed the future potential and constraints associated with the use of Vetiver for landslide mitigation. It is seen that the use of Vetiver reduces pore water pressure. The high tensile strength of Vetiver roots provides reinforcement for slopes and enhances soil shear strength. Vetiver increases saturated hydraulic conductivity and reduces surface runoff and slip surface depth. Being a vegetation-based climate-adaptive technology, this grass exhibits great promise in its ability to effectively address landslide problems. However, the magnitude of the root impact diminishes as the depth increases, rendering Vetiver a more promising remedy for shallow landslide occurrences. In addition, Vetiver grass has a wide range of practical uses due to its unique characteristics, which provide additional benefits. Employment of Vetiver is cost-effective compared with traditional engineering methods, and it requires less initial maintenance, which implies that community-based initiatives can effectively address landslide prevention through Vetiver implementation 
    more » « less
  7. Abstract Levees play a critical role in safeguarding communities and assets from flooding, acting as essential defenses against the devastating impacts of inundation. Yet, earthen levees are prone to breaches, especially in the face of swift floodwaters. Distributed low-cost sensor networks offer the potential to generate spatial maps illustrating soil moisture levels. Long-term monitoring of these spatial maps could identify vulnerable zones in the levee while providing an understanding of how climate change affects levee stability. This study presents an investigation into spatial monitoring of soil saturation in levees using a wireless network of UAV-deployable sensing spike packages. The goal of this paper is to demonstrate the use of these sensors for assessing soil conductivity levels in sand-filled embankments. The obtained soil conductivity levels are crucial for determining soil saturation. The developed sensing spikes consist of a spike that penetrates the ground and measures conductivity between two electrically conductive contacts. The sensing spike consists of microprocessors for edge computing, and wireless data communication systems that report data to a way station in real-time. To validate the efficacy of the developed sensors, a flume test is developed as a replica of a levee and monitored under controlled water flow conditions. The analysis of data at different times revealed the progression of moisture throughout the earthen embankment. Initially, the soil is almost dry. As the controlled water flow proceeds, the soil becomes partially saturated, with the final stage showing a dominant presence of saturated soil. The collected data sampled at the measurement points is expanded to a continuous moisture profile using kriging. Gaussian kriging, also known as ordinary kriging, is one of the commonly used variants of the kriging method. In Gaussian kriging, the estimation of values at unsampled locations is based on a linear combination of nearby data points, with weights determined by their spatial relationships. The Gaussian assumption implies that the errors in the estimation process follow a normal distribution. The extended knowledge about saturation levels obtained through kriging can lead to insights for predicting vulnerable areas and preempting potential failures. Overall, this study paves the way for further development of a wireless network of sensing spike packages as a UAV-deployable system for levee health assessment and improved infrastructure management. 
    more » « less
    Free, publicly-accessible full text available November 17, 2025
  8. Due to cyclic wetting and drying, the hydro-mechanical behavior of unsaturated soil is impacted significantly. In order to assess the soil strength parameters, knowing the unsaturated behavior is important. Soil moisture content is an important parameter that can define the shear strength of the soil. Most of the highway slopes of Mississippi are built on highly expansive clay. During summer, the evaporation of moisture in the soil leads to shrinkage and the formation of desiccation cracks, while during rainfall, the soil swells due to the infiltration of water. In addition to this, the rainwater gets trapped in these cracks and creates perched conditions, leading to the increased moisture content and reduced shear strength of slope soil. The increased precipitation due to climate change is causing failure conditions on many highway slopes of Mississippi. Vetiver, a perennial grass, can be a transformative solution to reduce the highway slope failure challenges of highly plastic clay. The grass has deep and fibrous roots, which provide additional shear strength to the soil. The root can uptake a significant amount of water from the soil, keeping the moisture balance of the slope. The objective of the current study is to assess the changes in moisture contents of a highway slope in Mississippi after the Vetiver plantation. Monitoring equipment, such as rain gauges and moisture sensors, were installed to monitor the rainfall of the area and the moisture content of the soil. The data showed that the moisture content conditions were improved with the aging of the grass. The light detection and ranging (LiDAR) analysis was performed to validate the field data obtained from different sensors, and it was found that there was no significant slope movement after the Vetiver plantation. The study proves the performance of the Vetiver grass in improving the unsaturated soil behavior and stability of highway slopes built on highly expansive clay. 
    more » « less
  9. Palaniappan, Kannappan; Seetharaman, Gunasekaran (Ed.)