skip to main content


Search for: All records

Creators/Authors contains: "Kim, In kee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Predictive VM (Virtual Machine) auto-scaling is a promising technique to optimize cloud applications’ operating costs and performance. Understanding the job arrival rate is crucial for accurately predicting future changes in cloud workloads and proactively provisioning and de-provisioning VMs for hosting the applications. However, developing a model that accurately predicts cloud workload changes is extremely challenging due to the dynamic nature of cloud workloads. Long- Short-Term-Memory (LSTM) models have been developed for cloud workload prediction. Unfortunately, the state-of-the-art LSTM model leverages recurrences to predict, which naturally adds complexity and increases the inference overhead as input sequences grow longer. To develop a cloud workload prediction model with high accuracy and low inference overhead, this work presents a novel time-series forecasting model called WGAN-gp Transformer, inspired by the Transformer network and improved Wasserstein-GANs. The proposed method adopts a Transformer network as a generator and a multi-layer perceptron as a critic. The extensive evaluations with real-world workload traces show WGAN- gp Transformer achieves 5× faster inference time with up to 5.1% higher prediction accuracy against the state-of-the-art. We also apply WGAN-gp Transformer to auto-scaling mechanisms on Google cloud platforms, and the WGAN-gp Transformer-based auto-scaling mechanism outperforms the LSTM-based mechanism by significantly reducing VM over-provisioning and under-provisioning rates. 
    more » « less
  2. null (Ed.)
    Smart-home devices promise to make users’ lives more convenient. However, at the same time, such devices increase the possibility of breaching users’ privacy as they are tightly connected to the users’ daily lives and activities. To address privacy invasion through smart-home devices, we present ChatterHub. This novel approach accurately identifies smart-home devices’ activities with minimal monitoring of encrypted traffic in the home network. ChatterHub targets devices that can only connect to the Internet through a centralized smart-home hub (e.g., Samsung SmartThings) using Zigbee or Z-wave. Specifically, ChatterHub passively eavesdrops on encrypted network traffic from the hub and leverages machine learning techniques to classify events and states of smart-home devices. Using ChatterHub, an adversary can identify smart-home devices’ specific activities without prior knowledge of the target smart home (e.g., list of deployed devices, types of communication protocols). We evaluated the accuracy and efficiency of ChatterHub in three real-world smart-home environments, and the evaluation results show that an attacker can successfully disclose smart-home devices’ behaviors with over 88% F1 score. We further demonstrate that ChatterHub successfully recognizes privacy-sensitive activities, including open and close of a smart door lock and turn on and off of smart LED. Additionally, to mitigate the threats posed by ChatterHub, we introduce two approaches, packet padding and random sequence injection. These mitigation approaches can effectively prevent threats from ChatterHub with only 9.2MB of additional network traffic per day. 
    more » « less