skip to main content


Search for: All records

Creators/Authors contains: "Kim, Jinsang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fluorescence emissionλmaxred-shifts with increasing DP in Vy4HC co-oligomers.

     
    more » « less
    Free, publicly-accessible full text available June 17, 2025
  2. Abstract Shape-morphable electrode arrays can form 3D surfaces to conform to complex neural anatomy and provide consistent positioning needed for next-generation neural interfaces. Retinal prostheses need a curved interface to match the spherical eye and a coverage of several cm to restore peripheral vision. We fabricated a full-field array that can (1) cover a visual field of 57° based on electrode position and of 113° based on the substrate size; (2) fold to form a compact shape for implantation; (3) self-deploy into a curvature fitting the eye after implantation. The full-field array consists of multiple polymer layers, specifically, a sandwich structure of elastomer/polyimide-based-electrode/elastomer, coated on one side with hydrogel. Electrodeposition of high-surface-area platinum/iridium alloy significantly improved the electrical properties of the electrodes. Hydrogel over-coating reduced electrode performance, but the electrodes retained better properties than those without platinum/iridium. The full-field array was rolled into a compact shape and, once implanted into ex vivo pig eyes, restored to a 3D curved surface. The full-field retinal array provides significant coverage of the retina while allowing surgical implantation through an incision 33% of the final device diameter. The shape-changing material platform can be used with other neural interfaces that require conformability to complex neuroanatomy. 
    more » « less
  3. null (Ed.)
    Abstract The subject of electromagnetism has often been called electrodynamics to emphasize the dominance of the electric field in dynamic light–matter interactions that take place under non-relativistic conditions. Here we show experimentally that the often neglected optical magnetic field can nevertheless play an important role in a class of optical nonlinearities driven by both the electric and magnetic components of light at modest (non-relativistic) intensities. We specifically report the observation of magneto-electric rectification, a previously unexplored nonlinearity at the molecular level which has important potential for energy conversion, ultrafast switching, nano-photonics, and nonlinear optics. Our experiments were carried out in nanocrystalline pentacene thin films possessing spatial inversion symmetry that prohibited second-order, all-electric nonlinearities but allowed magneto-electric rectification. 
    more » « less
  4. null (Ed.)
    Direct fabrication of a three-dimensional (3D) structure using soft materials has been challenging. The hybrid bilayer is a promising approach to address this challenge because of its programable shape-transformation ability when responding to various stimuli. The goals of this study are to experimentally and theoretically establish a rational design principle of a hydrogel/elastomer bilayer system and further optimize the programed 3D structures that can serve as substrates for multi-electrode arrays. The hydrogel/elastomer bilayer consists of a hygroscopic polyacrylamide (PAAm) layer cofacially laminated with a water-insensitive polydimethylsiloxane (PDMS) layer. The asymmetric volume change in the PAAm hydrogel can bend the bilayer into a curvature. We manipulate the initial monomer concentrations of the pre-gel solutions of PAAm to experimentally and theoretically investigate the effect of intrinsic mechanical properties of the hydrogel on the resulting curvature. By using the obtained results as a design guideline, we demonstrated stimuli-responsive transformation of a PAAm/PDMS flower-shaped bilayer from a flat bilayer film to a curved 3D structure that can serve as a substrate for a wide-field retinal electrode array. 
    more » « less
  5. Abstract

    Metal‐free organic triplet emitters are an emerging class of organic semiconducting material. Among them, molecules with tunable emission responsive to environmental stimuli have shown great potential in solid‐state lighting, sensors, and anti‐counterfeiting systems. Here, a novel excited‐state intramolecular proton transfer (ESIPT) system is proposed showing the activation of thermally activated delayed fluorescence (TADF) or room‐temperature phosphorescence (RTP) simultaneously from both keto and enol tautomers. The prototype ESIPT triplet emitters exhibit up to 50% delayed emission quantum yield. Their enol–keto tautomerization can be switched by controlling the matrix acidity in doped polymer films. Taking advantage of these unique properties, “on‐off” switchable triplet emission systems controlled by acid vapor annealing, as well as photopatterning systems capable of generating facile and high‐contrast emissive patterns, are devised.

     
    more » « less
  6. Abstract

    A new type of luminescence switching behavior based on phosphorescence enhancement from a series of metal‐free organic phosphors doped polymers by UV‐irradiation is investigated. This phenomenon is observed only from pairs of organic phosphors and polymer matrices having a combination of appropriate triplet exciton lifetime and oxygen permeability. Systematic investigation reveals that the luminescence switching behavior of organic phosphors embedded in a specific polymeric matrix stems from the conversion of triplet oxygens to singlet oxygens by UV‐irradiation, leading to the unique phosphorescence enhancement of organic phosphors. Visualization of latent information by UV‐irradiation is demonstrated toward novel secure information communication applications.

     
    more » « less
  7. Abstract

    The highly sensitive optical detection of oxygen including dissolved oxygen (DO) is of great interest in various applications. We devised a novel room‐temperature‐phosphorescence (RTP)‐based oxygen detection platform by constructing core–shell nanoparticles with water‐soluble polymethyloxazoline shells and oxygen‐permeable polystyrene cores crosslinked with metal‐free purely organic phosphors. The resulting nanoparticles show a very high sensitivity for DO with a limit of detection (LOD) of 60 nmand can be readily used for oxygen quantification in aqueous environments as well as the gaseous phase.

     
    more » « less