Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 15, 2026
-
Free, publicly-accessible full text available April 21, 2026
-
Free, publicly-accessible full text available February 13, 2026
-
Blankenship, Rebecca; Cherner, Todd (Ed.)
-
Cohen, J; Solano, G (Ed.)This study investigates the effects of embodied learning experiences in learning abstract concepts, such as computational thinking (CT), among young learners. Specifically, it examines whether the benefits of embodied learning can be replicated within a mixed-reality setting, where students engage with virtual objects to perform CT tasks. A group of ten first-grade students from an elementary school participated, engaging in embodied learning activities followed by assessments in CT. Through the analysis of video recordings, it was observed that participants could effectively articulate CT concepts, including the understanding of programming code meanings and their sequences, through their bodily movements. The congruence between students’ bodily movement and CT concepts was found to be advantageous for their comprehension. However, the study also noted instances of incongruent movements that did not align with the intended CT concepts, which attracted researchers’ attentions. The study identified two distinct types of embodiment manifested in the mixed-reality environment, shedding light on the nuanced dynamics of embodied learning in the context of CT education.more » « less
-
This study examined the effects of embodied learning experiences on students’ understanding of computational thinking (CT) concepts and their ability to solve CT problems. In a mixed-reality learning environment, students mapped CT concepts, such as sequencing and loops, onto their bodily movements. These movements were later applied to robot programming tasks, where students used the same CT concepts in a different modality. By explicitly connecting embodied actions with programming tasks, the intervention aimed to enhance students’ comprehension and transfer of CT skills. Forty-four first- and second-grade students participated in the study. The results showed significant improvements in students’ CT competency and positive attitudes toward CT. Additionally, an analysis of robot programming performance identified common errors and revealed how students employed embodied strategies to overcome challenges. The effects of embodied learning and the impact of embodied learning strategies were discussed.more » « less
An official website of the United States government

Full Text Available