skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kind, M. Carrasco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present galaxy-galaxy lensing measurements using a sample of low surface brightness galaxies (LSBGs) drawn from the Dark Energy Survey Year 3 (Y3) data as lenses. LSBGs are diffuse galaxies with a surface brightness dimmer than the ambient night sky. These dark-matter-dominated objects are intriguing due to potentially unusual formation channels that lead to their diffuse stellar component. Given the faintness of LSBGs, using standard observational techniques to characterize their total masses proves challenging. Weak gravitational lensing, which is less sensitive to the stellar component of galaxies, could be a promising avenue to estimate the masses of LSBGs. Our LSBG sample consists of 23,790 galaxies separated into red and blue color types at g i 0.60 and g i < 0.60 , respectively. Combined with the DES Y3 shear catalog, we measure the tangential shear around these LSBGs and find signal-to-noise ratios of 6.67 for the red sample, 2.17 for the blue sample, and 5.30 for the full sample. We use the clustering redshifts method to obtain redshift distributions for the red and blue LSBG samples. Assuming all red LSBGs are satellites, we fit a simple model to the measurements and estimate the host halo mass of these LSBGs to be . We place a 95% upper bound on the subhalo mass at . By contrast, we assume the blue LSBGs are centrals, and place a 95% upper bound on the halo mass at log ( M h o s t / M ) < 11.84 . We find that the stellar-to-halo mass ratio of the LSBG samples is consistent with that of the general galaxy population. This work illustrates the viability of using weak gravitational lensing to constrain the halo masses of LSBGs. 
    more » « less
  2. ABSTRACT Widefield surveys probe clustered scalar fields – such as galaxy counts, lensing potential, etc. – which are sensitive to different cosmological and astrophysical processes. Constraining such processes depends on the statistics that summarize the field. We explore the cumulative distribution function (CDF) as a summary of the galaxy lensing convergence field. Using a suite of N-body light-cone simulations, we show the CDFs’ constraining power is modestly better than the second and third moments, as CDFs approximately capture information from all moments. We study the practical aspects of applying CDFs to data, using the Dark Energy Survey (DES Y3) data as an example, and compute the impact of different systematics on the CDFs. The contributions from the point spread function and reduced shear approximation are $$\lesssim 1~{{\ \rm per\ cent}}$$ of the total signal. Source clustering effects and baryon imprints contribute 1–10 per cent. Enforcing scale cuts to limit systematics-driven biases in parameter constraints degrade these constraints a noticeable amount, and this degradation is similar for the CDFs and the moments. We detect correlations between the observed convergence field and the shape noise field at 13σ. The non-Gaussian correlations in the noise field must be modelled accurately to use the CDFs, or other statistics sensitive to all moments, as a rigorous cosmology tool. 
    more » « less
  3. ABSTRACT We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogues from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev–Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 105 clusters with mass and redshift ranges $$10^{13.7} \lt M_{\rm 200m}/\, {\rm M}_\odot \lt 10^{15.5}$$ and 0.1 < z < 2, and the total sky coverage of the maps is $$\approx 15\, 000 \deg ^2$$. We find a clear pressure deficit at R/R200m ≈ 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2–5 compared to predictions, and we discuss possible interpretations of this behaviour. An oriented stacking of clusters – where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogues – shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius. 
    more » « less
  4. ABSTRACT We present a method for mapping variations between probability distribution functions and apply this method within the context of measuring galaxy redshift distributions from imaging survey data. This method, which we name PITPZ for the probability integral transformations it relies on, uses a difference in curves between distribution functions in an ensemble as a transformation to apply to another distribution function, thus transferring the variation in the ensemble to the latter distribution function. This procedure is broadly applicable to the problem of uncertainty propagation. In the context of redshift distributions, for example, the uncertainty contribution due to certain effects can be studied effectively only in simulations, thus necessitating a transfer of variation measured in simulations to the redshift distributions measured from data. We illustrate the use of PITPZ by using the method to propagate photometric calibration uncertainty to redshift distributions of the Dark Energy Survey Year 3 weak lensing source galaxies. For this test case, we find that PITPZ yields a lensing amplitude uncertainty estimate due to photometric calibration error within 1 per cent of the truth, compared to as much as a 30 per cent underestimate when using traditional methods. 
    more » « less
  5. ABSTRACT We present an alternative calibration of the MagLim lens sample redshift distributions from the Dark Energy Survey (DES) first 3 yr of data (Y3). The new calibration is based on a combination of a self-organizing-map-based scheme and clustering redshifts to estimate redshift distributions and inherent uncertainties, which is expected to be more accurate than the original DES Y3 redshift calibration of the lens sample. We describe in detail the methodology, and validate it on simulations and discuss the main effects dominating our error budget. The new calibration is in fair agreement with the fiducial DES Y3 n(z) calibration, with only mild differences (<3σ) in the means and widths of the distributions. We study the impact of this new calibration on cosmological constraints, analysing DES Y3 galaxy clustering and galaxy–galaxy lensing measurements, assuming a Lambda cold dark matter cosmology. We obtain Ωm = 0.30 ± 0.04, σ8 = 0.81 ± 0.07, and S8 = 0.81 ± 0.04, which implies a ∼0.4σ shift in the Ω − S8 plane compared to the fiducial DES Y3 results, highlighting the importance of the redshift calibration of the lens sample in multiprobe cosmological analyses. 
    more » « less
  6. ABSTRACT We present a sample of 706, z < 1.5 active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg2. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 d, a 6-yr baseline, and a single-epoch imaging depth of up to g ∼ 24.5. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate ($$M_{\ast }\lt 10^{9.5}\, {\rm M}_\odot$$; median photometric redshift of 0.9). We were able to constrain rapid characteristic variability time-scales (∼ weeks) using the DES light curves in 15 dwarf AGN candidates (a subset of our variable AGN candidates) at a median photometric redshift of 0.4. This rapid variability is consistent with their low black hole (BH) masses. We confirm the low-mass AGN nature of one source with a high S/N optical spectrum. We publish our catalogue, optical light curves, and supplementary data, such as X-ray properties and optical spectra, when available. We measure a variable AGN fraction versus stellar mass and compare to results from a forward model. This work demonstrates the feasibility of optical variability to identify AGNs with lower BH masses in deep fields, which may be more ‘pristine’ analogues of supermassive BH seeds. 
    more » « less
  7. Abstract The Jupiter Trojans are a large group of asteroids that are coorbiting with Jupiter near its L4 and L5 Lagrange points. The study of Jupiter Trojans is crucial for testing different models of planet formation that are directly related to our understanding of solar system evolution. In this work, we select known Jupiter Trojans listed by the Minor Planet Center from the full six years data set (Y6) of the Dark Energy Survey (DES) to analyze their photometric properties. The DES data allow us to study Jupiter Trojans with a fainter magnitude limit than previous studies in a homogeneous survey withgrizband measurements. We extract a final catalog of 573 unique Jupiter Trojans. Our sample include 547 asteroids belonging to L5. This is one of the largest analyzed samples for this group. By comparing with the data reported by other surveys we found that the color distribution of L5 Trojans is similar to that of L4 Trojans. We find that L5 Trojans’g−iandg−rcolors become less red with fainter absolute magnitudes, a trend also seen in L4 Trojans. Both the L4 and L5 clouds consistently show such a color–size correlation over an absolute magnitude range 11 <H< 18. We also use DES colors to perform taxonomic classifications. C- and P-type asteroids outnumber D-type asteroids in the L5 Trojans DES sample, which have diameters in the 5–20 km range. This is consistent with the color–size correlation. 
    more » « less
  8. ABSTRACT We perform a cosmic shear analysis in harmonic space using the first year of data collected by the Dark Energy Survey (DES-Y1). We measure the cosmic weak lensing shear power spectra using the metacalibration catalogue and perform a likelihood analysis within the framework of CosmoSIS. We set scale cuts based on baryonic effects contamination and model redshift and shear calibration uncertainties as well as intrinsic alignments. We adopt as fiducial covariance matrix an analytical computation accounting for the mask geometry in the Gaussian term, including non-Gaussian contributions. A suite of 1200 lognormal simulations is used to validate the harmonic space pipeline and the covariance matrix. We perform a series of stress tests to gauge the robustness of the harmonic space analysis. Finally, we use the DES-Y1 pipeline in configuration space to perform a similar likelihood analysis and compare both results, demonstrating their compatibility in estimating the cosmological parameters S8, σ8, and Ωm. We use the DES-Y1 metacalibration shape catalogue, with photometric redshifts estimates in the range of 0.2−1.3, divided in four tomographic bins finding σ8(Ωm/0.3)0.5 = 0.766 ± 0.033 at 68 per cent CL. The methods implemented and validated in this paper will allow us to perform a consistent harmonic space analysis in the upcoming DES data. 
    more » « less
  9. null (Ed.)
    Abstract We present morphological classifications of ∼27 million galaxies from the Dark Energy Survey (DES) Data Release 1 (DR1) using a supervised deep learning algorithm. The classification scheme separates: (a) early-type galaxies (ETGs) from late-types (LTGs), and (b) face-on galaxies from edge-on. Our Convolutional Neural Networks (CNNs) are trained on a small subset of DES objects with previously known classifications. These typically have mr ≲ 17.7mag; we model fainter objects to mr < 21.5 mag by simulating what the brighter objects with well determined classifications would look like if they were at higher redshifts. The CNNs reach 97% accuracy to mr < 21.5 on their training sets, suggesting that they are able to recover features more accurately than the human eye. We then used the trained CNNs to classify the vast majority of the other DES images. The final catalog comprises five independent CNN predictions for each classification scheme, helping to determine if the CNN predictions are robust or not. We obtain secure classifications for ∼ 87% and 73% of the catalog for the ETG vs. LTG and edge-on vs. face-on models, respectively. Combining the two classifications (a) and (b) helps to increase the purity of the ETG sample and to identify edge-on lenticular galaxies (as ETGs with high ellipticity). Where a comparison is possible, our classifications correlate very well with Sérsic index (n), ellipticity (ε) and spectral type, even for the fainter galaxies. This is the largest multi-band catalog of automated galaxy morphologies to date. 
    more » « less
  10. null (Ed.)