Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A search for proton decay into and a meson has been performed using data from a exposure (6050.3 live days) of Super-Kamiokande. Compared to previous searches this work introduces an improved model of the intranuclear interaction cross section, resulting in a factor of 2 reduction in uncertainties from this source and increase in signal efficiency. No significant data excess was found above the expected number of atmospheric neutrino background events resulting in no indication of proton decay into either mode. Lower limits on the proton partial lifetime of for and for at the 90% CL were set. These limits are around 1.5 times longer than our previous study and are the most stringent to date. Published by the American Physical Society2024more » « less
-
We present the results of the charge ratio ( ) and polarization ( ) measurements using decay electron events collected between September 2008 and June 2022 with the Super-Kamiokande detector. Because of its underground location and long operation, we are able to perform high-precision measurements by accumulating cosmic-ray muons. We measured the muon charge ratio to be at , where is the muon energy and is the zenith angle of incoming cosmic-ray muons. This result is consistent with the Honda flux model while indicating a tension with the model of . We also measured the muon polarization at the production location to be at the muon momentum of at the surface of the mountain; this also suggests a tension with the Honda flux model of . This is the most precise measurement ever to experimentally determine the cosmic-ray muon polarization near . These measurement results are useful to improve atmospheric neutrino simulations. Published by the American Physical Society2024more » « less
-
Abstract Neutrinos from very nearby supernovae, such as Betelgeuse, are expected to generate more than ten million events over 10 s in Super-Kamokande (SK). At such large event rates, the buffers of the SK analog-to-digital conversion board (QBEE) will overflow, causing random loss of data that are critical for understanding the dynamics of the supernova explosion mechanism. In order to solve this problem, two new data-acquisition (DAQ) modules were developed to aid in the observation of very nearby supernovae. The first of these, the SN module, is designed to save only the number of hit photomultiplier tubes during a supernova burst and the second, the Veto module, prescales the high-rate neutrino events to prevent the QBEE from overflowing based on information from the SN module. In the event of a very nearby supernova, these modules allow SK to reconstruct the time evolution of the neutrino event rate from beginning to end using both QBEE and SN module data. This paper presents the development and testing of these modules together with an analysis of supernova-like data generated with a flashing laser diode. We demonstrate that the Veto module successfully prevents DAQ overflows for Betelgeuse-like supernovae as well as the long-term stability of the new modules. During normal running the Veto module is found to issue DAQ vetos a few times per month resulting in a total dead-time less than 1 ms, and does not influence ordinary operations. Additionally, using simulation data we find that supernovae closer than 800 pc will trigger the Veto module, resulting in a prescaling of the observed neutrino data.more » « less
-
Abstract We present the results of a time-coincident event search for low-energy electron antineutrinos in the KamLAND detector with gamma-ray bursts (GRBs) from the Gamma-ray Coordinates Network and Fermi Gamma-ray Burst Monitor. Using a variable coincidence time window of ±500 s plus the duration of each GRB, no statistically significant excess above the background is observed. We place the world’s most stringent 90% confidence level upper limit on the electron antineutrino fluence below 17.5 MeV. Assuming a Fermi–Dirac neutrino energy spectrum from the GRB source, we use the available redshift data to constrain the electron antineutrino luminosity and effective temperature.more » « less
-
Abstract We report on a search for electron antineutrinos ( ) from astrophysical sources in the neutrino energy range 8.3–30.8 MeV with the KamLAND detector. In an exposure of 6.72 kton-year of the liquid scintillator, we observe 18 candidate events via the inverse beta decay reaction. Although there is a large background uncertainty from neutral current atmospheric neutrino interactions, we find no significant excess over background model predictions. Assuming several supernova relic neutrino spectra, we give upper flux limits of 60–110 cm−2s−1(90% confidence level, CL) in the analysis range and present a model-independent flux. We also set limits on the annihilation rates for light dark matter pairs to neutrino pairs. These data improve on the upper probability limit of8B solar neutrinos converting into , (90% CL) assuming an undistorted shape. This corresponds to a solar flux of 60 cm−2s−1(90% CL) in the analysis energy range.more » « less
-
Abstract We report the result of a search for neutrinos in coincidence with solar flares from the GOES flare database. The search was performed on a 10.8 kton-year exposure of KamLAND collected from 2002 to 2019. This large exposure allows us to explore previously unconstrained parameter space for solar flare neutrinos. We found no statistical excess of neutrinos and established 90% confidence level upper limits of 8.4 × 107cm−2(3.0 × 109cm−2) on the electron antineutrino (electron neutrino) fluence at 20 MeV normalized to the X12 flare, assuming that the neutrino fluence is proportional to the X-ray intensity.more » « less
An official website of the United States government

Full Text Available