skip to main content


Search for: All records

Creators/Authors contains: "Knapp, Sonja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Cultivated exotic plants are often introduced for their aesthetic value and today comprise a substantial fraction of the flora of urban domestic gardens. Yet, their relative contribution to the functional diversity of domestic gardens and how it changes across different climate zones is insufficiently understood. Here, we investigated whether the effects of cultivated exotics on functional diversity of three plant traits related to plant aesthetics (that is, plant showiness, plant height, and leaf area) varied in suburban domestic gardens in three regions (Minnesota, USA; Alt Empordà, Spain; and central South Africa) that differ in aridity. For each garden, we calculated the mean and variance of each plant trait considering all co-occurring species and also splitting them into co-occurring cultivated exotics and natives. Our results revealed that mean plant showiness increased linearly with the proportion of cultivated exotics both across and within studied regions. Moreover, co-occurring cultivated exotics were, on average, showier than natives in all regions, but differences in their trait variances were context-dependent. The interaction between cultivated exotics and aridity explained variation in mean plant height and leaf area better than either predictor alone, with the effect of cultivated exotics being stronger in more arid regions. Accordingly, co-occurring cultivated exotics were taller and had larger leaves than natives in warmer and drier regions, while the opposite was true in cooler and wetter regions. Our study highlights the need to consider the combined effects of exotic species and climate in future studies of urban ecology. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Cities can host significant biological diversity. Yet, urbanisation leads to the loss of habitats, species, and functional groups. Understanding how multiple taxa respond to urbanisation globally is essential to promote and conserve biodiversity in cities. Using a dataset encompassing six terrestrial faunal taxa (amphibians, bats, bees, birds, carabid beetles and reptiles) across 379 cities on 6 continents, we show that urbanisation produces taxon-specific changes in trait composition, with traits related to reproductive strategy showing the strongest response. Our findings suggest that urbanisation results in four trait syndromes (mobile generalists, site specialists, central place foragers, and mobile specialists), with resources associated with reproduction and diet likely driving patterns in traits associated with mobility and body size. Functional diversity measures showed varied responses, leading to shifts in trait space likely driven by critical resource distribution and abundance, and taxon-specific trait syndromes. Maximising opportunities to support taxa with different urban trait syndromes should be pivotal in conservation and management programmes within and among cities. This will reduce the likelihood of biotic homogenisation and helps ensure that urban environments have the capacity to respond to future challenges. These actions are critical to reframe the role of cities in global biodiversity loss.

     
    more » « less
  4. Abstract

    Whether cities are more or less diverse than surrounding environments, and the extent to which non‐native species in cities impact regional species pools, remain two fundamental yet unanswered questions in urban ecology. Here we offer a unifying framework for understanding the mechanisms that generate biodiversity patterns across taxonomic groups and spatial scales in urban systems. One commonality between existing frameworks is the collective recognition that species co‐occurrence locally is not simply a function of natural colonization and extinction processes. Instead, it is largely a consequence of human actions that are governed by a myriad of social processes occurring across groups, institutions, and stakeholders. Rather than challenging these frameworks, we expand upon them to explicitly consider how human and non‐human mechanisms interact to control urban biodiversity and influence species composition over space and time. We present a comprehensive theory of the processes that drive biodiversity within cities, between cities and surrounding non‐urbanized areas and across cities, using the general perspective of metacommunity ecology. Armed with this approach, we embrace the fact that humans substantially influence β‐diversity by creating a variety of different habitats in urban areas, and by influencing dispersal processes and rates, and suggest ways how these influences can be accommodated to existing metacommunity paradigms. Since patterns in urban biodiversity have been extensively described at the local or regional scale, we argue that the basic premises of the theory can be validated by studying the β‐diversity across spatial scales within and across urban areas. By explicitly integrating the myriad of processes that drive native and non‐native urban species co‐occurrence, the proposed theory not only helps reconcile contrasting views on whether urban ecosystems are biodiversity hotspots or biodiversity sinks, but also provides a mechanistic understanding to better predict when and why alternative biodiversity patterns might emerge.

     
    more » « less