skip to main content


Search for: All records

Creators/Authors contains: "Kolanowski, Maciej"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc>

    It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. A<sc>bstract</sc>

    We study black holes in two and three dimensions that have spacelike curvature singularities behind horizons. The 2D solutions are obtained by dimensionally reducing certain 3D black holes, known as quantum BTZ solutions. Furthermore, we identify the corresponding dilaton potential and show how it can arise from a higher-dimensional theory. Finally, we show that the rotating BTZ black hole develops a singular inner horizon once quantum effects are properly accounted for, thereby solidifying strong cosmic censorship for all known cases.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Free, publicly-accessible full text available August 1, 2024
  4. A bstract In holography, the IR behavior of a quantum system at nonzero density is described by the near horizon geometry of an extremal charged black hole. It is commonly believed that for systems on S 3 , this near horizon geometry is AdS 2 × S 3 . We show that this is not the case: generic static, nonspherical perturbations of AdS 2 × S 3 blow up at the horizon, showing that it is not a stable IR fixed point. We then construct a new near horizon geometry which is invariant under only SO(3) (and not SO(4)) symmetry and show that it is stable to SO(3)-preserving perturbations (but not in general). We also show that an open set of nonextremal, SO(3)-invariant charged black holes develop this new near horizon geometry in the limit T → 0. Our new IR geometry still has AdS 2 symmetry, but it is warped over a deformed sphere. We also construct many other near horizon geometries, including some with no rotational symmetries, but expect them all to be unstable IR fixed points. 
    more » « less
  5. A bstract We investigate the geometry near the horizon of a generic, four-dimensional extremal black hole. When the cosmological constant is negative, we show that (in almost all cases) tidal forces diverge as one crosses the horizon, and this singularity is stronger for larger black holes. In particular, this applies to generic nonspherical black holes, such as those satisfying inhomogeneous boundary conditions. Nevertheless, all scalar curvature invariants remain finite. Moreover, we show that nonextremal black holes have tidal forces that diverge in the extremal limit. Holographically, this singularity is reflected in anomalous scaling of the specific heat with temperature. Similar (albeit weaker) effects are present when the cosmological constant is positive, but not when it vanishes. 
    more » « less
  6. A bstract In a companion paper [1] we showed that the symmetry group $$ \mathfrak{G} $$ G of non-expanding horizons (NEHs) is a 1-dimensional extension of the Bondi-Metzner-Sachs group $$ \mathfrak{B} $$ B at $$ \mathcal{I} $$ I + . For each infinitesimal generator of $$ \mathfrak{G} $$ G , we now define a charge and a flux on NEHs as well as perturbed NEHs. The procedure uses the covariant phase space framework in presence of internal null boundaries $$ \mathcal{N} $$ N along the lines of [2–6]. However, $$ \mathcal{N} $$ N is required to be an NEH or a perturbed NEH. Consequently, charges and fluxes associated with generators of $$ \mathfrak{G} $$ G are free of physically unsatisfactory features that can arise if $$ \mathcal{N} $$ N is allowed to be a general null boundary. In particular, all fluxes vanish if $$ \mathcal{N} $$ N is an NEH, just as one would hope; and fluxes associated with symmetries representing ‘time-translations’ are positive definite on perturbed NEHs. These results hold for zero as well as non-zero cosmological constant. In the asymptotically flat case, as noted in [1], $$ \mathcal{I} $$ I ± are NEHs in the conformally completed space-time but with an extra structure that reduces $$ \mathfrak{G} $$ G to $$ \mathfrak{B} $$ B . The flux expressions at $$ \mathcal{N} $$ N reflect this synergy between NEHs and $$ \mathcal{I} $$ I + . In a forthcoming paper, this close relation between NEHs and $$ \mathcal{I} $$ I + will be used to develop gravitational wave tomography, enabling one to deduce horizon dynamics directly from the waveforms at $$ \mathcal{I} $$ I + . 
    more » « less
  7. A bstract It is well-known that blackhole and cosmological horizons in equilibrium situations are well-modeled by non expanding horizons (NEHs) [1–3]. In the first part of the paper we introduce multipole moments to characterize their geometry, removing the restriction to axisymmetric situations made in the existing literature [4]. We then show that the symmetry group $$ \mathfrak{G} $$ G of NEHs is a 1-dimensional extension of the BMS group $$ \mathfrak{B} $$ B . These symmetries are used in a companion paper [5] to define charges and fluxes on NEHs, as well as perturbed NEHs. They have physically attractive properties. Finally, it is generally not appreciated that $$ \mathcal{I} $$ I ± of asymptotically flat space-times are NEHs in the conformally completed space-time . Forthcoming papers will (i) show that $$ \mathcal{I} $$ I ± have a small additional structure that reduces $$ \mathfrak{G} $$ G to the BMS group $$ \mathfrak{B} $$ B , and the BMS charges and fluxes can be recovered from the NEH framework; and, (ii) develop gravitational wave tomography for the late stage of compact binary coalescences: reading-off the dynamics of perturbed NEHs in the strong field regime (via evolution of their multipoles), from the waveform at $$ \mathcal{I} $$ I + . 
    more » « less