skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kolanowski, Maciej"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Near-extremal black holes are subject to large quantum effects, which modify their low-temperature thermodynamic behavior. Hitherto, these quantum effects were analyzed by separating the geometry into the near-horizon region and its exterior. It is desirable to understand and reproduce such corrections from the full higher-dimensional asymptotically flat or AdS geometry’s perspective. We address this question in this article and fill this gap. Specifically, we find off-shell eigenmodes of the quadratic fluctuation operator of the Euclidean gravitational dynamics, with eigenvalues that vanish linearly with temperature. We illustrate this for BTZ and neutral black holes with hyperbolic horizons in AdS in Einstein-Hilbert theory, and for the charged black holes in Einstein-Maxwell theory. The linear scaling with Matsubara frequency, which is a distinctive feature of the modes, together with the fact that their wavefunctions localize close to the horizon as we approach extremality, identifies them as responsible for the aforementioned quantum effects. We provide a contour prescription to deal with the sign indefiniteness of the Euclidean Einstein-Maxwell action, which we derive to aid our analysis. We also resolve a technical puzzle regarding modes associated with rotational isometries in stationary black hole spacetimes. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. A<sc>bstract</sc> We investigate spin-refined partition functions in AdS/CFT using Euclidean gravitational path integrals. We construct phase diagrams forZX= Tr(e−βHX) in various dimensions and for different choices of discrete isometryX, discovering rich structures at finite temperature. WhenXis a reflection,ZXcounts the difference between the number of even- and odd-spin microstates. The high-temperature regime is universally dominated by$$ \mathcal{CRT} $$ CRT -twisted black holes in any dimension, and in odd spacetime dimensions we examine whether complex rotating black hole solutions can contribute to spin-refined observables or potentially dominate at finite temperature. We also analyze the microcanonical ensemble. There the leading contribution almost always comes from rotating black holes, showing that the two ensembles are not necessarily equivalent. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. A<sc>bstract</sc> Spacetime wormholes can provide non-perturbative contributions to the gravitational path integral that make the actual number of stateseSin a gravitational system much smaller than the number of states$$ {e}^{S_{\textrm{p}}} $$ e S p predicted by perturbative semiclassical effective field theory. The effects on the physics of the system are naturally profound in contexts in which the perturbative description actively involvesN=O(eS) of the possible$$ {e}^{S_{\textrm{p}}} $$ e S p perturbative states; e.g., in late stages of black hole evaporation. Such contexts are typically associated with the existence of non-trivial quantum extremal surfaces. However, by forcing a simple topological gravity model to evolve in time, we find that such effects can also have large impact forN≪eS(in which case no quantum extremal surfaces can arise). In particular, even for smallN, the insertion of generic operators into the path integral can cause the non-perturbative time evolution to differ dramatically from perturbative expectations. On the other hand, this discrepancy is small for the special case where the inserted operators are non-trivial only in a subspace of dimensionD≪eS. We thus study this latter case in detail. We also discuss potential implications for more realistic gravitational systems. 
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  4. A<sc>bstract</sc> It was recently shown that (near-)extremal Kerr black holes are sensitive probes of small higher-derivative corrections to general relativity. In particular, these corrections produce diverging tidal forces on the horizon in the extremal limit. We show that adding a black hole charge makes this effect qualitatively stronger. Higher-derivative corrections to the Kerr-Newman solution produce tidal forces that scale inversely in the black hole temperature. We find that, unlike the Kerr case, for realistic values of the black hole charge large tidal forces can arise before quantum corrections due to the Schwarzian mode become important, so that the near-horizon behavior of the black hole is dictated by higher-derivative terms in the effective theory. 
    more » « less
  5. A<sc>bstract</sc> We study black holes in two and three dimensions that have spacelike curvature singularities behind horizons. The 2D solutions are obtained by dimensionally reducing certain 3D black holes, known as quantum BTZ solutions. Furthermore, we identify the corresponding dilaton potential and show how it can arise from a higher-dimensional theory. Finally, we show that the rotating BTZ black hole develops a singular inner horizon once quantum effects are properly accounted for, thereby solidifying strong cosmic censorship for all known cases. 
    more » « less
  6. A bstract We investigate the geometry near the horizon of a generic, four-dimensional extremal black hole. When the cosmological constant is negative, we show that (in almost all cases) tidal forces diverge as one crosses the horizon, and this singularity is stronger for larger black holes. In particular, this applies to generic nonspherical black holes, such as those satisfying inhomogeneous boundary conditions. Nevertheless, all scalar curvature invariants remain finite. Moreover, we show that nonextremal black holes have tidal forces that diverge in the extremal limit. Holographically, this singularity is reflected in anomalous scaling of the specific heat with temperature. Similar (albeit weaker) effects are present when the cosmological constant is positive, but not when it vanishes. 
    more » « less
  7. A bstract In holography, the IR behavior of a quantum system at nonzero density is described by the near horizon geometry of an extremal charged black hole. It is commonly believed that for systems on S 3 , this near horizon geometry is AdS 2 × S 3 . We show that this is not the case: generic static, nonspherical perturbations of AdS 2 × S 3 blow up at the horizon, showing that it is not a stable IR fixed point. We then construct a new near horizon geometry which is invariant under only SO(3) (and not SO(4)) symmetry and show that it is stable to SO(3)-preserving perturbations (but not in general). We also show that an open set of nonextremal, SO(3)-invariant charged black holes develop this new near horizon geometry in the limit T → 0. Our new IR geometry still has AdS 2 symmetry, but it is warped over a deformed sphere. We also construct many other near horizon geometries, including some with no rotational symmetries, but expect them all to be unstable IR fixed points. 
    more » « less
  8. A bstract In a companion paper [1] we showed that the symmetry group $$ \mathfrak{G} $$ G of non-expanding horizons (NEHs) is a 1-dimensional extension of the Bondi-Metzner-Sachs group $$ \mathfrak{B} $$ B at $$ \mathcal{I} $$ I + . For each infinitesimal generator of $$ \mathfrak{G} $$ G , we now define a charge and a flux on NEHs as well as perturbed NEHs. The procedure uses the covariant phase space framework in presence of internal null boundaries $$ \mathcal{N} $$ N along the lines of [2–6]. However, $$ \mathcal{N} $$ N is required to be an NEH or a perturbed NEH. Consequently, charges and fluxes associated with generators of $$ \mathfrak{G} $$ G are free of physically unsatisfactory features that can arise if $$ \mathcal{N} $$ N is allowed to be a general null boundary. In particular, all fluxes vanish if $$ \mathcal{N} $$ N is an NEH, just as one would hope; and fluxes associated with symmetries representing ‘time-translations’ are positive definite on perturbed NEHs. These results hold for zero as well as non-zero cosmological constant. In the asymptotically flat case, as noted in [1], $$ \mathcal{I} $$ I ± are NEHs in the conformally completed space-time but with an extra structure that reduces $$ \mathfrak{G} $$ G to $$ \mathfrak{B} $$ B . The flux expressions at $$ \mathcal{N} $$ N reflect this synergy between NEHs and $$ \mathcal{I} $$ I + . In a forthcoming paper, this close relation between NEHs and $$ \mathcal{I} $$ I + will be used to develop gravitational wave tomography, enabling one to deduce horizon dynamics directly from the waveforms at $$ \mathcal{I} $$ I + . 
    more » « less
  9. A bstract It is well-known that blackhole and cosmological horizons in equilibrium situations are well-modeled by non expanding horizons (NEHs) [1–3]. In the first part of the paper we introduce multipole moments to characterize their geometry, removing the restriction to axisymmetric situations made in the existing literature [4]. We then show that the symmetry group $$ \mathfrak{G} $$ G of NEHs is a 1-dimensional extension of the BMS group $$ \mathfrak{B} $$ B . These symmetries are used in a companion paper [5] to define charges and fluxes on NEHs, as well as perturbed NEHs. They have physically attractive properties. Finally, it is generally not appreciated that $$ \mathcal{I} $$ I ± of asymptotically flat space-times are NEHs in the conformally completed space-time . Forthcoming papers will (i) show that $$ \mathcal{I} $$ I ± have a small additional structure that reduces $$ \mathfrak{G} $$ G to the BMS group $$ \mathfrak{B} $$ B , and the BMS charges and fluxes can be recovered from the NEH framework; and, (ii) develop gravitational wave tomography for the late stage of compact binary coalescences: reading-off the dynamics of perturbed NEHs in the strong field regime (via evolution of their multipoles), from the waveform at $$ \mathcal{I} $$ I + . 
    more » « less