Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This dataset provides estimates of total Irrigation Water Use (IWU) by crop, county, water source, and year for the Continental United States. Total irrigation from Surface Water Withdrawals (SWW), total Groundwater Withdrawals (GWW), and nonrenewable Groundwater Depletion (GWD) is provided for 20 crops and crop groups from 2008 to 2020 at the county spatial resolution. In total, there are nearly 2.5 million data points in this dataset (3,142 counties; 13 years; 3 water sources; and 20 crops). This dataset supports the paper by Ruess et al (2024) "Total irrigation by crop in the Continental United States from 2008 to 2020", Scientific Data, doi: 10.1038/s41597-024-03244-w When using, please cite as: Ruess, P.J., Konar, M., Wanders, N., and Bierkens, M.F.P. (2024) Total irrigation by crop in the Continental United States from 2008 to 2020, Scientific Data, doi: 10.1038/s41597-024-03244-wmore » « less
-
Abstract Global grain trade plays a key role in food security. Many nations rely on imported grain to meet their dietary requirements. Grain imports may be at risk due to weather shocks, economic crises, or international conflicts. Countries aim to balance import risk with the expected return of their grain supplies. This research brings these dual objectives together in an innovative modern portfolio theory framework. Modern portfolio theory provides a set of concepts to formulate the trade-off between risk and expected return in national grain imports. Using Markowitz’s mean-variance optimization model, we identify opportunities to reduce risk in existing national grain import accounts, without increasing costs under realistic supply mass constraints of trade partners. Several major grain importers may be able to reduce risk in their grain imports without increasing cost, such as wheat imports in Egypt, maize imports in Vietnam, and rice imports in Saudi Arabia. However, some countries would indeed have to pay more to achieve more stable grain supplies, such as wheat imports in Turkey. This study provides a framework to quantify the different costs, benefits, and levels of risk in grain trade that can inform future research and decision-making.more » « less
-
Abstract We provide a dataset of irrigation water withdrawals by crop, county, year, and water source within the United States. We employ a framework we previously developed to establish a companion dataset to our original estimates. The main difference is that we now use the U.S. Geological Survey (USGS) variable ‘irrigation — total’ to partition PCR-GLOBWB 2 hydrology model estimates, instead of ‘irrigation — crop’ as used in previous estimates. Our findings for Surface Water Withdrawals (SWW), total Groundwater Withdrawals (GWW), and nonrenewable Groundwater Depletion (GWD) are similar to those of prior estimates but now have better spatial coverage, since several states are missing from the USGS ‘irrigation — crop’ variable that was originally used. Irrigation water use increases in this study, since more states are included and ‘irrigation — total’ includes more categories of irrigation than ‘irrigation — crop’. Notably, irrigation in the Mississippi Embayment Aquifer is now captured for rice and soy. We provide nearly 2.5 million data points with this paper (3,142 counties; 13 years; 3 water sources; and 20 crops).more » « less
-
Abstract Agricultural supply chains play a crucial role in supporting food security in Africa. However, high-resolution supply chain information is often not available, which hinders our ability to determine which interventions in food supply chains would most enhance food security. In this study, we develop a high-resolution supply chain model for essential staple crops in Zambia, aiming to estimate how improvements in transportation infrastructure would impact food security. Specifically, we simulate district-level monthly consumption, trade flows, and storage for maize and cassava in Zambia. We then conduct a counterfactual case study with low transportation costs, discovering that reducing transaction costs leads to higher aggregate net agricultural revenue and aggregate net expenditure. These results indicate that transportation investments are more beneficial to suppliers than to consumers, with implications for household food security in smallholder agriculture. Our study highlights the potential for infrastructure investments to improve food security.more » « less
-
Abstract The United States and China are key nations in global agricultural and food trade. They share a complex bilateral agri-food trade network in which disruptions could have a global ripple effect. Yet, we do not understand the spatially resolved connections in the bilateral US–China agri-food trade. In this study, we estimate the bilateral agri-food trade between Chinese provinces and U.S. states and counties. First, we estimate bilateral imports and exports of agri-food commodities for provinces and states. Second, we model link-level connections between provinces and states/counties. To do this, we develop a novel algorithm that integrates a variety of national and international databases for the year 2017, including trade data from the US Census Bureau, the US Freight Analysis Framework database, and Multi-Regional Input-Output tables for China. We then adapt the food flow model for inter-county agri-food movements within the US to estimate bilateral trade through port counties. We estimate 2,954 and 162,922 link-level connections at the state-province and county-province resolution, respectively, and identify core nodes in the bilateral agri-food trade network. Our results provide a spatially detailed mapping of the US–China bilateral agri-food trade, which may enable future research and inform decision-makers.more » « less
-
Abstract The food system is an important contributor to carbon dioxide (CO 2 ) emissions. The refrigerated food supply chain is an energy-intensive, nutritious and high-value part of the food system, making it particularly important to consider. In this study, we develop a novel model of cold chain food flows between counties in the United States. Specifically, we estimate truck transport via roadways of meat and prepared foodstuffs for the year 2017. We use the roadway travel distance in our model framework rather than the haversine distance between two locations to improve the estimate for long-haul freight with a temperature-controlled system. This enables us to more accurately calculate the truck fuel consumption and CO 2 emissions related to cold chain food transport. We find that the cold chain transport of meat emitted 8.4 × 10 6 t CO 2 yr −1 and that of prepared foodstuffs emitted 14.5 × 10 6 t CO 2 yr −1 , which is in line with other studies. Meat has a longer average refrigerated transport distance, resulting in higher transport CO 2 emissions per kg than processed foodstuffs. We also find that CO 2 emissions from cold chain food transport are not projected to significantly increase under the temperatures projected to occur with climate change in 2045. These county-level cold chain food flows could be used to inform infrastructure investment, supply chain decision-making and environmental footprint studies.more » « less
-
Abstract Civil infrastructure underpins urban receipts of food, energy, and water (FEW) produced in distant watersheds. In this study, we map flows of FEW goods from watersheds of the contiguous United States to major population centers and highlight the critical infrastructure that supports FEW flows. To do this, we draw upon detailed records of agriculture, electricity, and public water supply production and couple them with commodity flow and infrastructure information. We also compare the flows of virtual water embedded in food and energy commodity flows with physical water flows in inter‐basin water transfer projects around the country. We found that the virtual blue water transfers through crops and electricity to major US cities was 53 billion and 8 billion m3in 2017, respectively, while physical interbasin water transfers for crops, electricity, and public supply water averaged 20.8 billion m3. Highways are the primary infrastructure used to import virtual water associated with food and fuel into cities, although waterways and railways are most utilized for long‐distance transport. All of the 204 watersheds in the contiguous US support the food, energy, and/or water supplies of major US cities, with dependencies stretching far beyond each city's borders. Still, most cities source the majority of their FEW and embedded water resources from nearby watersheds. Infrastructure such as water supply dams and inland ports serve as important buffers for both local and supply‐chain sourced water stress. These findings can inform efforts to reduce water resources and infrastructure risks in domestic supply chains.more » « less