skip to main content

Search for: All records

Creators/Authors contains: "Kong, Yu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Online action detection is the task of predicting the action as soon as it happens in a streaming video. A major challenge is that the model does not have access to the future and has to solely rely on the history, i.e., the frames observed so far, to make predictions. It is therefore important to accentuate parts of the history that are more informative to the prediction of the current frame. We present GateHUB, Gated History Unit with Background Suppression, that comprises a novel position-guided gated cross-attention mechanism to enhance or suppress parts of the history as per how informative they are for current frame prediction. GateHUB further proposes Future-augmented History (FaH) to make history features more informative by using subsequently observed frames when available. In a single unified framework, GateHUB integrates the transformer's ability of long-range temporal modeling and the recurrent model's capacity to selectively encode relevant information. GateHUB also introduces a background suppression objective to further mitigate false positive background frames that closely resemble the action frames. Extensive validation on three benchmark datasets, THUMOS, TVSeries, and HDD, demonstrates that GateHUB significantly outperforms all existing methods and is also more efficient than the existing best work. Furthermore, a flow-freemore »version of GateHUB is able to achieve higher or close accuracy at 2.8x higher frame rate compared to all existing methods that require both RGB and optical flow information for prediction.« less
    Free, publicly-accessible full text available June 21, 2023
  2. Free, publicly-accessible full text available February 1, 2023
  3. Free, publicly-accessible full text available January 1, 2023
  4. Video entailment aims at determining if a hypothesis textual statement is entailed or contradicted by a premise video. The main challenge of video entailment is that it requires fine-grained reasoning to understand the complex and long story-based videos. To this end, we propose to incorporate visual grounding to the entailment by explicitly linking the entities described in the statement to the evidence in the video. If the entities are grounded in the video, we enhance the entailment judgment by focusing on the frames where the entities occur. Besides, in the entailment dataset, the entailed/contradictory (also named as real/fake) statements are formed in pairs with subtle discrepancy, which allows an add-on explanation module to predict which words or phrases make the statement contradictory to the video and regularize the training of the entailment judgment. Experimental results demonstrate that our approach outperforms the state-of-the-art methods.
  5. Visual tracking has achieved remarkable success in recent decades, but it remains a challenging problem due to appearance variations over time and complex cluttered background. In this paper, we adopt a tracking-by-verification scheme to overcome these challenges by determining the patch in the subsequent frame that is most similar to the target template and distinctive to the background context. A multi-stream deep similarity learning network is proposed to learn the similarity comparison model. The loss function of our network encourages the distance between a positive patch in the search region and the target template to be smaller than that between positive patch and the background patches. Within the learned feature space, even if the distance between positive patches becomes large caused by the appearance change or interference of background clutter, our method can use the relative distance to distinguish the target robustly. Besides, the learned model is directly used for tracking with no need of model updating, parameter fine-tuning and can run at 45 fps on a single GPU. Our tracker achieves state-of-the-art performance on the visual tracking benchmark compared with other recent real-time-speed trackers, and shows better capability in handling background clutter, occlusion and appearance change.