skip to main content

Search for: All records

Creators/Authors contains: "Konopacky, Quinn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the kinematic analysis of 246 stars within4from the center of Orion Nebula Cluster (ONC), the closest massive star cluster with active star formation across the full mass range, which provides valuable insights in the formation and evolution of star cluster on an individual-star basis. High-precision radial velocities and surface temperatures are retrieved from spectra acquired by the NIRSPEC instrument used with adaptive optics (NIRSPAO) on the Keck II 10 m telescope. A 3D kinematic map is then constructed by combining with the proper motions previously measured by the Hubble Space Telescope Advanced Camera for Surveys/WFPC2/WFC3IR and Keck II NIRC2. The measured root-mean-squared velocity dispersion is 2.26 ± 0.08 km s−1, significantly higher than the virial equilibrium’s requirement of 1.73 km s−1, suggesting that the ONC core is supervirial, consistent with previous findings. Energy equipartition is not detected in the cluster. Most notably, the velocity of each star relative to its neighbors is found to be negatively correlated with stellar mass. Low-mass stars moving faster than their surrounding stars in a supervirial cluster suggests that the initial masses of forming stars may be related to their initial kinematic states. Additionally, a clockwise rotation preference is detected. A weak sign of inverse mass segregation is also identified among stars excluding the Trapezium stars, although it could be a sample bias. Finally, this study reports the discovery of four new candidate spectroscopic binary systems.

    more » « less
  2. Abstract

    The eccentricity of a substellar companion is an important tracer of its formation history. Directly imaged companions often present poorly constrained eccentricities. A recently developed prior framework for orbit fitting called “observable-based priors” has the advantage of improving biases in derived orbit parameters for objects with minimal phase coverage, which is the case for the majority of directly imaged companions. We use observable-based priors to fit the orbits of 21 exoplanets and brown dwarfs in an effort to obtain the eccentricity distributions with minimized biases. We present the objects’ individual posteriors compared to their previously derived distributions, showing in many cases a shift toward lower eccentricities. We analyze the companions’ eccentricity distribution at a population level, and compare this to the distributions obtained with the traditional uniform priors. We fit a Beta distribution to our posteriors using observable-based priors, obtaining shape parametersα=1.090.22+0.30andβ=1.420.25+0.33. This represents an approximately flat distribution of eccentricities. The derivedαandβparameters are consistent with the values obtained using uniform priors, though uniform priors lead to a tail at high eccentricities. We find that separating the population into high- and low-mass companions yields different distributions depending on the classification of intermediate-mass objects. We also determine via simulation that the minimal orbit coverage needed to give meaningful posteriors under the assumptions made for directly imaged planets is ≈15% of the inferred period of the orbit.

    more » « less
  3. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)

    We present a high-contrast imaging survey of intermediate-mass (1.75–4.5 M⊙) stars to search the most extreme stellar binaries, i.e. for the lowest mass stellar companions. Using adaptive optics at the Lick and Gemini observatories, we observed 169 stars and detected 24 candidates companions, 16 of which are newly discovered, and all but three are likely or confirmed physical companions. Despite obtaining sensitivity down to the substellar limit for 75 per cent of our sample, we do not detect any companion below 0.3 M⊙, strongly suggesting that the distribution of stellar companions is truncated at a mass ratio of qmin ≳ 0.075. Combining our results with known brown dwarf companions, we identify a low-mass companion desert to intermediate-mass stars in the range 0.02 ≲ q ≲ 0.05, which quantitatively matches the known brown dwarf desert among solar-type stars. We conclude that the formation mechanism for multiple systems operates in a largely scale-invariant manner and precludes the formation of extremely uneven systems, likely because the components of a protobinary accrete most of their mass after the initial cloud fragmentation. Similarly, the mechanism to form ‘planetary’ (q ≲ 0.02) companions likely scales linearly with stellar mass, probably as a result of the correlation between the masses of stars and their protoplanetary discs. Finally, we predict the existence of a sizable population of brown dwarf companions to low-mass stars and of a rising population of planetary-mass objects towards ${\approx}1\,M_\mathrm{Jup}$ around solar-type stars. Improvements on current instrumentation will test these predictions.

    more » « less
  5. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
  6. Geyl, Roland ; Navarro, Ramón (Ed.)
  7. Seagroves, Scott ; Barnes, Austin ; Metevier, Anne ; Porter, Jason ; Hunter, Lisa (Ed.)
    The Institute for Scientist and Engineer Educators (ISEE) Professional Development Program (PDP) has led to the generation of several activities geared toward training in astronomical instrumentation. These include activities developed for the Center for Adaptive Optics summer school and the AstroTech Instrumentation Summer School. The goal of these activities has been to provide the participants with hands-on experience to convey challenging concepts in instrumentation. The inclusion of practices from PDP led to activities that prioritized inquiry-based approaches over the more traditional formulaic lab-based training and activities. Our panel will review the design of these activities and discuss approaches that increase the likelihood of achieving the learning goals. We will also discuss ways in which these activities can help encourage students with little previous experience in instrumentation to consider additional studies in instrumentation. Finally, we will reflect on the importance of facilitators for these activities and the role PDP plays in training facilitators. 
    more » « less
  8. Abstract While the Milky Way nuclear star cluster (MW NSC) has been studied extensively, how it formed is uncertain. Studies have shown it contains a solar and supersolar metallicity population that may have formed in situ, along with a subsolar-metallicity population that may have formed via mergers of globular clusters and dwarf galaxies. Stellar abundance measurements are critical to differentiate between formation scenarios. We present new measurements of [M/H] and α -element abundances [ α /Fe] of two subsolar-metallicity stars in the Galactic center. These observations were taken with the adaptive-optics-assisted high-resolution ( R = 24,000) spectrograph NIRSPEC in the K band (1.8–2.6 micron). These are the first α -element abundance measurements of subsolar-metallicity stars in the MW NSC. We measure [M/H] = − 0.59 ± 0.11, [ α /Fe] = 0.05 ± 0.15 and [M/H] = − 0.81 ± 0.12, [ α /Fe] = 0.15 ± 0.16 for the two stars at the Galactic center; the uncertainties are dominated by systematic uncertainties in the spectral templates. The stars have an [ α /Fe] in between the [ α /Fe] of globular clusters and dwarf galaxies at similar [M/H] values. Their abundances are very different than the bulk of the stars in the nuclear star cluster. These results indicate that the subsolar-metallicity population in the MW NSC likely originated from infalling dwarf galaxies or globular clusters and are unlikely to have formed in situ. 
    more » « less
  9. Abstract The kinematics and dynamics of stellar and substellar populations within young, still-forming clusters provide valuable information for constraining theories of formation mechanisms. Using Keck II NIRSPEC+AO data, we have measured radial velocities for 56 low-mass sources within 4′ of the core of the Orion Nebula Cluster (ONC). We also remeasure radial velocities for 172 sources observed with SDSS/APOGEE. These data are combined with proper motions measured using HST ACS/WFPC2/WFC3IR and Keck II NIRC2, creating a sample of 135 sources with all three velocity components. The velocities measured are consistent with a normal distribution in all three components. We measure intrinsic velocity dispersions of ( σ v α , σ v δ , σ v r ) = (1.64 ± 0.12, 2.03 ± 0.13, 2.56 − 0.17 + 0.16 ) km s −1 . Our computed intrinsic velocity dispersion profiles are consistent with the dynamical equilibrium models from Da Rio et al. (2014) in the tangential direction but not in the line-of-sight direction, possibly indicating that the core of the ONC is not yet virialized, and may require a nonspherical potential to explain the observed velocity dispersion profiles. We also observe a slight elongation along the north–south direction following the filament, which has been well studied in previous literature, and an elongation in the line-of-sight to tangential velocity direction. These 3D kinematics will help in the development of realistic models of the formation and early evolution of massive clusters. 
    more » « less
  10. Abstract We present medium-resolution ( λ /Δ λ  = 2700), near-infrared spectral standards for field L0–L2, L4, and L7–Y0 dwarfs obtained with the Near-Infrared Echellette Spectrometer on the Keck II 10 m telescope. These standards allow for detailed spectral comparative analysis of cold brown dwarfs discovered through ongoing ground-based projects such as Backyard Worlds: Planet 9, and forthcoming space-based spectral surveys such as the James Webb Space Telescope, SPHEREx, Euclid, and the Nancy Grace Roman Space Telescope. 
    more » « less