Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
A fundamental notion of distance between train and test distributions from the field of domain adaptation is discrepancy distance. While in general hard to compute, here we provide the first set of provably efficient algorithms for testing localized discrepancy distance, where discrepancy is computed with respect to a fixed output classifier. These results imply a broad set of new, efficient learning algorithms in the recently introduced model of Testable Learning with Distribution Shift (TDS learning) due to Klivans et al. (2023).Our approach generalizes and improves all prior work on TDS learning: (1) we obtain universal learners that succeed simultaneously for large classes of test distributions, (2) achieve near-optimal error rates, and (3) give exponential improvements for constant depth circuits. Our methods further extend to semi-parametric settings and imply the first positive results for low-dimensional convex sets. Additionally, we separate learning and testing phases and obtain algorithms that run in fully polynomial time at test time.more » « lessFree, publicly-accessible full text available December 10, 2025
-
Free, publicly-accessible full text available July 1, 2025
-
In the well-studied agnostic model of learning, the goal of a learnerβ given examples from an arbitrary joint distribution β is to output a hypothesis that is competitive (to within π) of the best fitting concept from some class. In order to escape strong hardness results for learning even simple concept classes in this model, we introduce a smoothed analysis framework where we require a learner to compete only with the best classifier that is robust to small random Gaussian perturbation. This subtle change allows us to give a wide array of learning results for any concept that (1) depends on a low-dimensional subspace (aka multi-index model) and (2) has a bounded Gaussian surface area. This class includes functions of halfspaces and (low-dimensional) convex sets, cases that are only known to be learnable in non-smoothed settings with respect to highly structured distributions such as Gaussians. Perhaps surprisingly, our analysis also yields new results for traditional non-smoothed frameworks such as learning with margin. In particular, we obtain the first algorithm for agnostically learning intersections of π -halfspaces in time π\poly(logπππΎ) where πΎ is the margin parameter. Before our work, the best-known runtime was exponential in π (Arriaga and Vempala, 1999).more » « lessFree, publicly-accessible full text available July 2, 2025
-
Free, publicly-accessible full text available June 24, 2025
-
Free, publicly-accessible full text available June 24, 2025