skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kopp, Darin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Key Points We compared tools for describing streamflow timeseries, including streamflow metrics, wavelet, and Fourier analysis Each method indicated streamflow data are structured: variability at short timescales is negatively correlated with long timescales Globally, dams were less correlated with streamflow regime than catchment size and climate were 
    more » « less
  2. null (Ed.)
    Ecological flows across ecosystem boundaries are typically studied at spatial scales that limit our understanding of broad geographical patterns in ecosystem linkages. Aquatic insects that metamorphose into terrestrial adults are important resource subsidies for terrestrial ecosystems. Traits related to their development and dispersal should determine their availability to terrestrial consumers. Here, we synthesize geospatial, aquatic biomonitoring and biological traits data to quantify the relative importance of several environmental gradients on the potential spatial and temporal characteristics of aquatic insect subsidies across the contiguous United States. We found the trait composition of benthic macroinvertebrate communities varies among hydrologic regions and could affect how aquatic insects transport subsidies as adults. Further, several trait–environment relationships were underpinned by hydrology. Large bodied taxa that could disperse further from the stream were associated with hydrologically stable conditions. Alternatively, hydrologically variable conditions were associated with multivoltine taxa that could extend the duration of subsidies with periodic emergence events throughout the year. We also found that anthropogenic impacts decrease the frequency of individuals with adult flight but potentially extend the distance subsidies travel into the terrestrial ecosystem. Collectively, these results suggest that natural and anthropogenic gradients could affect aquatic insect subsidies by changing the trait composition of benthic macroinvertebrate communities. The conceptual framework and trait–environment relationships we present shows promise for understanding broad geographical patterns in linkages between ecosystems. 
    more » « less
  3. Abstract Empirical evidence and theory suggest that climate warming and an increase in the frequency and duration of drying events will alter the metabolic balance of freshwater ecosystems. However, the impacts of climate change on ecosystem metabolism may depend on whether energy inputs are of autochthonous or allochthonous origin. To date, few studies have examined how warming and drying may interact to alter stream metabolism, much less how their impacts may depend on the energy‐base of the food web.To address this research gap, we conducted a multi‐factorial experiment using outdoor mesocosms to investigate the individual and synergistic effects of warming and drought on metabolic processes in stream mesocosms with green (algal‐based) vs. mixed (algal‐ and detritus‐based) vs. brown (detritus‐based) energy pathways.We set up 48 mesocosms with one of three different levels of shade and leaf litter input combinations to create mesocosms with different primary energy channels. In addition, we warmed half of the mesocosms by ~2–3°C. We assessed changes in ecosystem respiration (ER), gross primary production (GPP), net ecosystem production (NEP) and organic matter biomass in warmed and ambient temperature mesocosms before a 24 day drying event and after rewetting.Surprisingly, experimental warming had little effect on metabolic processes. Drying, however, led to decreased rates of ER and GPP and led to an overall reduction in NEP. Although the effects of drying were similar across energy channel treatments, reductions in ER and GPP were primarily driven by decreases in biomass of benthic and filamentous algae.Overall, we demonstrate that drying led to lower rates of NEP in mesocosms regardless of energy inputs. While warming showed little effect in our study, our results suggest that an increase in the frequency of stream drying events could greatly alter the metabolic balance of many aquatic ecosystems. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract Habitat fragmentation drives biodiversity loss in rivers around the world. Although the effects of anthropogenic barriers on river connectivity are well known, there has been little research on the ways in which stream drying may alter connections among habitats and resources. Given that stream drying is increasing in many regions, there is a pressing need to understand the effects of drying on habitat fragmentation. Here, we quantify spatiotemporal drying patterns under current and future climate scenarios in the Upper Blue River Basin, Oklahoma. We used a hydrologic model to simulate daily streamflow for nine climate scenarios. For each scenario, we calculated metrics of streamflow temporal continuity (dry days, dry periods, and dry period duration) and spatial connectivity (wetted length, number of dry stream fragments, length of dry stream fragments, and dendritic connectivity index) from simulated daily streamflow. We found that stream drying is likely to increase in all future climate scenarios and that increases in stream drying reduce connectivity. However, the effects of stream drying on connectivity were highly nonlinear. Specifically, we observed a threshold around which a small increase in stream drying led to a rapid drop in connectivity. We also found that the greatest increases in stream drying were not associated with the highest emission scenarios, underscoring the complex linkages among climate, water availability, and connectivity. Given that connectivity is essential to ecosystem structure and function, we discuss water management strategies informed by impacts of stream drying. 
    more » « less
  5. Abstract While climate change is altering ecosystems on a global scale, not all ecosystems are responding in the same way. The resilience of ecological communities may depend on whether food webs are producer‐ or detritus‐based (i.e. ‘green’ or ‘brown’ food webs, respectively), or both (i.e. ‘multi‐channel’ food web).Food web theory suggests that the presence of multiple energy pathways can enhance community stability and resilience and may modulate the responses of ecological communities to disturbances such as climate change. Despite important advances in food web theory, few studies have empirically investigated the resilience of ecological communities to climate change stressors in ecosystems with different primary energy channels.We conducted a factorial experiment using outdoor stream mesocosms to investigate the independent and interactive effects of warming and drought on invertebrate communities in food webs with different energy channel configurations. Warming had little effect on invertebrates, but stream drying negatively impacted total invertebrate abundance, biomass, richness and diversity.Although resistance to drying did not differ among energy channel treatments, recovery and overall resilience were higher in green mesocosms than in mixed and brown mesocosms. Resilience to drying also varied widely among taxa, with larger predatory taxa exhibiting lower resilience.Our results suggest that the effects of drought on stream communities may vary regionally and depend on whether food webs are fuelled by autochthonous or allochthonous basal resources. Communities inhabiting streams with large amounts of organic matter and more complex substrates that provide refugia may be more resilient to the loss of surface water than communities inhabiting streams with simpler, more homogeneous substrates. 
    more » « less
  6. Abstract Emergent aquatic insects transport aquatic‐derived resources into terrestrial ecosystems but are rarely studied at landscape or regional scales. Here, we investigate how stream network geometry constrains the spatial influence of aquatic insect subsidies in terrestrial ecosystems. We also explore potential factors (i.e., climate, topography, soils, and vegetation) that could produce variation in stream network geometry and thus change the extent of aquatic insect subsidies from one region to another. The stream signature is the percentage of aquatic insect subsidies traveling a given distance into the terrestrial ecosystem, relative to what comes out of the stream. We use this concept to model the spatial extent (area) and distribution (spatial patterning) of aquatic subsidies in terrestrial ecosystems across the contiguous United States. Our findings suggest that at least 8% of the subsidies measured at the aquatic–terrestrial boundary (i.e., the 8% stream signature) are typically transferred throughout the entire watershed and that variation in this spatial extent is largely influenced by the drainage density of the stream network. Moreover, we found stream signatures from individual stream reaches overlap such that the spatial extent of the 8% stream signature often includes inputs from multiple stream reaches. Landscape‐scale stream network characteristics increased the area of overlapping stream signatures more than reach‐scale channel properties. Finally, we found runoff was an important factor influencing stream network geometry suggesting a potential effect of climate on aquatic‐to‐terrestrial linkages that have been understudied. 
    more » « less