Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Molecular-beam epitaxy enables ultrathin functional materials to be combined in heterostructures to create emergent phenomena at the interface. Magnetic skyrmions are an example of an exciting phase found in such heterostructures. SrRuO3 and SrRuO3-based heterostructures have been at the center of the debate on whether a hump-like feature appearing in Hall resistivities is sufficient evidence to prove the presence of skyrmions in a material. To address the ambiguity, we synthesize a model heterostructure with engineered Berry curvature that combines, in parallel, a positive anomalous Hall effect (AHE) channel (a Sr0.6Ca0.4RuO3 layer) with a negative AHE channel (a SrRuO3 layer). We demonstrate that the two opposite AHE channels can be combined to artificially reproduce a “hump-like” feature, which closely resembles the hump-like feature typically attributed to the topological Hall effect and the presence of chiral spin textures, such as skyrmions. We compare our heterostructure with a parallel resistor model, where the inputs are the AHE data from individual Sr0.6Ca0.4RuO3 and SrRuO3 films. To check for the presence of skyrmions, we measure the current dependence, angle dependence, and minor loop dependence of Rhump in the heterostructure. Despite the clear hump, no evidence of skyrmions is found.more » « less
-
Epitaxial untwinned SrRuO3 thin films were grown on (110)-oriented DyScO3 substrates by molecular-beam epitaxy. We report an exceptional sample with a residual resistivity ratio (RRR), ρ [300 K]/ρ [4 K] of 205 and a ferromagnetic Curie temperature, TC, of 168.3 K. We compare the properties of this sample to other SrRuO3 films grown on DyScO3(110) with RRRs ranging from 8.8 to 205, and also compare it to the best reported bulk single crystal of SrRuO3. We determine that SrRuO3 thin films grown on DyScO3(110) have an enhanced TC as long as the RRR of the thin film is above a minimum electrical quality threshold. This RRR threshold is about 20 for SrRuO3. Films with lower RRR exhibit TCs that are significantly depressed from the intrinsic strain-enhanced value.more » « less
-
We demonstrate the epitaxial growth of the first two members, and the n=∞ member of the homologous Ruddlesden–Popper series of Ban+1InnO2.5n+1 of which the n=1 member was previously unknown. The films were grown by suboxide molecular-beam epitaxy where the indium is provided by a molecular beam of indium-suboxide [In2O (g)]. To facilitate ex situ characterization of the highly hygroscopic barium indate films, a capping layer of amorphous SiO2 was deposited prior to air exposure. The structural quality of the films was assessed by x-ray diffraction, reflective high-energy electron diffraction, and scanning transmission electron microscopy.more » « less
-
The unconventional superconductivity in Sr2RuO4 is infamously susceptible to suppression by small levels of disorder such that it has been most commonly studied in extremely high-purity bulk crystals. Here, we harness local structural and spectroscopic scanning transmission electron microscopy measurements in epitaxial thin films of Sr2RuO4 to disentangle the impact of different types of crystalline disorder on superconductivity. We find that cation off-stoichiometry during growth gives rise to two distinct types of disorder: mixed-phase structural inclusions that accommodate excess ruthenium and ruthenium vacancies when the growth is ruthenium-deficient. Several superconducting films host mixed-phase intergrowths, suggesting this microstructural disorder has relatively little impact on superconductivity. In a non-superconducting film, on the other hand, we measure a high density of ruthenium-vacancies (∼14%) with no significant reduction in the crystallinity of the film. The results suggest that ruthenium vacancy disorder, which is hidden to many structural probes, plays an important role in suppressing superconductivity. We discuss the broader implications of our findings to guide the future synthesis of this and other layered systems.more » « less
-
We demonstrate a-axis YBa2Cu3O7−x/PrBa2Cu3O7−x/YBa2Cu3O7−x trilayers grown on (100) LaAlO3 substrates with improved interface smoothness. The trilayers are synthesized by ozone-assisted molecular-beam epitaxy. The thickness of the PrBa2Cu3O7−x layer is held constant at 8 nm, and the thickness of the YBa2Cu3O7−x layers is varied from 24 nm to 100 nm. X-ray diffraction measurements show all trilayers to have >97% a-axis content. The rms roughness of the thinnest trilayer is <0.7 nm, and this roughness increases with the thickness of the YBa2Cu3O7−x layers. The thickness of the YBa2Cu3O7−x layers also affects the transport properties: while all samples exhibit an onset of the superconducting transition at and above 85 K, the thinner samples show wider transition widths, ΔTc. High-resolution scanning transmission electron microscopy reveals coherent and chemically sharp interfaces and that growth begins with a cubic (Y,Ba)CuO3−x perovskite phase that transforms into a-axis oriented YBa2Cu3O7−x as the substrate temperature is ramped up.more » « less
-
Homologous series are layered phases that can have a range of stoichiometries depending on an index n. Examples of perovskite-related homologous series include (ABO3)nAO Ruddlesden–Popper phases and (Bi2O2) (An−1BnO3n+1) Aurivillius phases. It is challenging to precisely control n because other members of the homologous series have similar stoichiometry and a phase with the desired n is degenerate in energy with syntactic intergrowths among similar n values; this challenge is amplified as n increases. To improve the ability to synthesize a targeted phase with precise control of the atomic layering, we apply the x-ray diffraction (XRD) approach developed for superlattices of III–V semiconductors to measure minute deviations from the ideal structure so that they can be quantitatively eradicated in subsequent films. We demonstrate the precision of this approach by improving the growth of known Ruddlesden–Popper phases and ultimately, by synthesizing an unprecedented n = 20 Ruddlesden–Popper phase, (ATiO3)20AO where the A-site occupancy is Ba0.6Sr0.4. We demonstrate the generality of this method by applying it to Aurivillius phases and the Bi2Sr2Can–1CunO2n+4 series of high-temperature superconducting phases.more » « less
-
We report the growth of superconducting Sr2RuO4 thin films by molecular-beam epitaxy on (110) NdGaO3 substrates with transition temperatures of up to 1.8 K. We calculate and experimentally validate a thermodynamic growth window for the adsorption-controlled growth of superconducting Sr2RuO4 epitaxial thin films. The growth window for achieving superconducting Sr2RuO4 thin films is narrow in growth temperature, oxidant pressure, and ruthenium-to-strontium flux ratio.more » « less