skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krishna, Hare"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> In this paper, we analyze the loop corrections to celestial OPE for gluons and gravitons. Even at the loop level, the soft gluons and gravitons have conformal dimensions ∆ = 1−$${\mathbb{Z}}_{\ge 0}$$. The only novelty is the presence of higher poles. At one loop level, there are two types of conformal soft gluons with a single pole and a double pole in the ∆ plane. The celestial OPEs are obtained using the collinear splitting functions. In the case of gluons, the splitting functions receive loop corrections. After taking the holomorphic soft limit, we find the OPE of conformal soft gluons. We find a novel mixing of simple and double poles soft gluon operators in the OPE. In the case of gravitons, where splitting functions are known to be all loop exact, we still find a wedge algebra ofwwhich is in addition to the wedge algebra ofw1+∞already found by Strominger. 
    more » « less
  2. A<sc>bstract</sc> We consider the 𝒩 = (2, 2) AdS3/CFT2dualities proposed by Eberhardt, where the bulk geometry is AdS3× (S3×T4)/ℤk, and the CFT is a deformation of the symmetric orbifold of the supersymmetric sigma modelT4/ℤk(withk= 2, 3, 4, 6). The elliptic genera of the two sides vanish due to fermionic zero modes, so for microstate counting applications one must consider modified supersymmetric indices. In an analysis similar to that of Maldacena, Moore, and Strominger for the standard 𝒩 = (4, 4) case ofT4, we study the appropriate helicity-trace index of the boundary CFTs. We encounter a strange phenomenon where a saddle-point analysis of our indices reproduces only a fraction (respectively$$ \frac{1}{2} $$ 1 2 ,$$ \frac{2}{3} $$ 2 3 ,$$ \frac{3}{4} $$ 3 4 ,$$ \frac{5}{6} $$ 5 6 ) of the Bekenstein-Hawking entropy of the associated macroscopic black branes. 
    more » « less
  3. A<sc>bstract</sc> In [1], logarithmic correction to subleading soft photon and soft graviton theorems have been derived in four spacetime dimensions from the ratio of IR-finite S-matrices. This has been achieved after factoring out IR-divergent components from the traditional electromagnetic and gravitational S-matrices using Grammer-Yennie prescription. Although the loop corrected subleading soft theorems are derived from one-loop scattering amplitudes involving scalar particles in a minimally coupled theory with scalar contact interaction, it has been conjectured that the soft factors are universal (theory independent) and one-loop exact (don’t receive corrections from higher loops). This paper extends the analysis conducted in [1] to encompass general spinning particle scattering with non-minimal couplings permitted by gauge invariance and general coordinate invariance. By re-deriving the lnωsoft factors in this generic setup, we establish their universal nature. Furthermore, we summarize the results of loop corrected soft photon and graviton theorems up to sub-subleading order, which follows from the analysis of one and two loop QED and quantum gravity S-matrices. While the classical versions of these soft factors have already been derived in the literature, we put forth conjectures regarding the quantum soft factors and outline potential strategies for their derivation. 
    more » « less
  4. A bstract We study 2-point correlation functions for scalar operators in position space through holography including bulk cubic couplings as well as higher curvature couplings to the square of the Weyl tensor. We focus on scalar operators with large conformal dimensions. This allows us to use the geodesic approximation for propagators. In addition to the leading order contribution, captured by geodesics anchored at the insertion points of the operators on the boundary and probing the bulk geometry thoroughly studied in the literature, the first correction is given by a Witten diagram involving both the bulk cubic coupling and the higher curvature couplings. As a result, this correction is proportional to the VEV of a neutral operator O k and thus probes the interior of the black hole exactly as in the case studied by Grinberg and Maldacena [13]. The form of the correction matches the general expectations in CFT and allows to identify the contributions of T n O k (being T n the general contraction of n energy-momentum tensors) to the 2-point function. This correction is actually the leading term for off-diagonal correlators (i.e. correlators for operators of different conformal dimension), which can then be computed holographically in this way. 
    more » « less