skip to main content

Search for: All records

Creators/Authors contains: "Kroemer, Oliver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 13, 2024
  2. We propose SCALE, an approach for discovering and learning a di- verse set of interpretable robot skills from a limited dataset. Rather than learning a single skill which may fail to capture all the modes in the data, we first iden- tify the different modes via causal reasoning and learn a separate skill for each of them. Our main insight is to associate each mode with a unique set of causally relevant context variables that are discovered by performing causal interventions in simulation. This enables data partitioning based on the causal processes that generated the data, and then compressed skills that ignore the irrelevant variables can be trained. We model each robot skill as a Regional Compressed Option, which extends the options framework by associating a causal process and its rele- vant variables with the option. Modeled as the skill Data Generating Region, each causal process is local in nature and hence valid over only a subset of the context space. We demonstrate our approach for two representative manipulation tasks: block stacking and peg-in-hole insertion under uncertainty. Our experiments show that our approach yields diverse skills that are compact, robust to domain shifts, and suitable for sim-to-real transfer. 
    more » « less
    Free, publicly-accessible full text available November 13, 2024
  3. Different models can provide differing levels of fidelity when a robot is planning. Analytical models are often fast to evaluate but only work in limited ranges of conditions. Meanwhile, physics simulators are effective at modeling complex interactions between objects but are typically more computationally expensive. Learning when to switch between the various models can greatly improve the speed of planning and task success reliability. In this work, we learn model deviation estimators (MDEs) to predict the error between real-world states and the states outputted by transition models. MDEs can be used to define a model precondition that describes which transitions are accurately modeled. We then propose a planner that uses the learned model preconditions to switch between various models in order to use models in conditions where they are accurate, prioritizing faster models when possible. We evaluate our method on two real-world tasks: placing a rod into a box and placing a rod into a closed drawer. 
    more » « less
  4. Robots deployed in many real-world settings need to be able to acquire new skills and solve new tasks over time. Prior works on planning with skills often make assumptions on the structure of skills and tasks, such as subgoal skills, shared skill implementations, or task-specific plan skeletons, which limit adaptation to new skills and tasks. By contrast, we propose doing task planning by jointly searching in the space of parameterized skills using high-level skill effect models learned in simulation. We use an iterative training procedure to efficiently generate relevant data to train such models. Our approach allows flexible skill parameterizations and task specifications to facilitate lifelong learning in general-purpose domains. Experiments demonstrate the ability of our planner to integrate new skills in a lifelong manner, finding new task strategies with lower costs in both train and test tasks. We additionally show that our method can transfer to the real world without further fine-tuning. 
    more » « less
  5. Modelling and learning the dynamics of intricate dynamic interactions prevalent in common tasks such as push- ing a heavy door or picking up an object in one sweeping motion is a challenging problem. One needs to consider both the dynamics of the individual objects and of the interactions among objects. In this work, we present a method that enables efficient learning of the dynamics of interacting systems by simultaneously learning a dynamic graph structure and a stable and locally linear forward dynamic model of the system. The dynamic graph structure encodes evolving contact modes along a trajectory by making probabilistic predictions over the edge activations. Introducing a temporal dependence in the learned graph structure enables incorporating contact measurement updates which allows for more accurate forward predictions. The learned stable and locally linear dynamics enable the use of optimal control algorithms such as iLQR for long-horizon planning and control for complex interactive tasks. Through experiments in simulation and in the real world, we evaluate the performance of our method by using the learned inter- action dynamics for control and demonstrate generalization to more objects and interactions not seen during training. We also introduce a control scheme that takes advantage of contact measurement updates and hence is robust to prediction inaccuracies during execution. 
    more » « less
  6. Detecting and localizing contacts is essential for robot manipulators to perform contact-rich tasks in unstructured environments. While robot skins can localize contacts on the surface of robot arms, these sensors are not yet robust or easily accessible. As such, prior works have explored using proprioceptive observations, such as joint velocities and torques, to perform contact localization. Many past approaches assume the robot is static during contact incident, a single contact is made at a time, or having access to accurate dynamics models and joint torque sensing. In this work, we relax these assumptions and propose using Domain Randomization to train a neural network to localize contacts of robot arms in motion without joint torque observations. Our method uses a novel cylindrical projection encoding of the robot arm surface, which allows the network to use convolution layers to process input features and transposed convolution layers to predict contacts. The trained network achieves a contact detection accuracy of 91.5% and a mean contact localization error of 3.0cm. We further demonstrate an application of the contact localization model in an obstacle mapping task, evaluated in both simulation and the real world. 
    more » « less