skip to main content

Search for: All records

Creators/Authors contains: "Kruijssen, J M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    In the hierarchical view of star formation, giant molecular clouds (GMCs) undergo fragmentation to form small-scale structures made up of stars and star clusters. Here we study the connection between young star clusters and cold gas across a range of extragalactic environments by combining the high resolution (1″) PHANGS–ALMA catalogue of GMCs with the star cluster catalogues from PHANGS–HST. The star clusters are spatially matched with the GMCs across a sample of 11 nearby star-forming galaxies with a range of galactic environments (centres, bars, spiral arms, etc.). We find that after 4 − 6 Myr the star clusters are no longer associated with any gas clouds. Additionally, we measure the autocorrelation of the star clusters and GMCs as well as their cross-correlation to quantify the fractal nature of hierarchical star formation. Young (≤10 Myr) star clusters are more strongly autocorrelated on kpc and smaller spatial scales than the $\gt \, 10$ Myr stellar populations, indicating that the hierarchical structure dissolves over time.


    Young massive clusters (YMCs) are compact (≲1 pc), high-mass (>104 M⊙) stellar systems of significant scientific interest. Due to their rarity and rapid formation, we have very few examples of YMC progenitor gas clouds before star formation has begun. As a result, the initial conditions required for YMC formation are uncertain. We present high resolution (0.13 arcsec, ∼1000 au) ALMA observations and Mopra single-dish data, showing that Galactic Centre dust ridge ‘Cloud d’ (G0.412 + 0.052, mass = 7.6 × 104 M⊙, radius = 3.2 pc) has the potential to become an Arches-like YMC (104 M⊙, r ∼ 1 pc), but is not yet forming stars. This would mean it is the youngest known pre-star-forming massive cluster and therefore could be an ideal laboratory for studying the initial conditions of YMC formation. We find 96 sources in the dust continuum, with masses ≲3 M⊙ and radii of ∼103 au. The source masses and separations are more consistent with thermal rather than turbulent fragmentation. It is not possible to unambiguously determine the dynamical state of most of the sources, as the uncertainty on virial parameter estimates is large. We find evidence for large-scale (∼1 pc) converging gas flows, which could cause the cloud to grow rapidly, gaining 104 M⊙ within 105 yr. The highest density gas is found atmore »the convergent point of the large-scale flows. We expect this cloud to form many high-mass stars, but find no high-mass starless cores. If the sources represent the initial conditions for star formation, the resulting initial mass function will be bottom heavy.

    « less
  3. Abstract

    It has been shown that ultra-diffuse galaxies (UDGs) have higher specific frequencies of globular clusters, on average, than other dwarf galaxies with similar luminosities. The UDG NGC 5846-UDG1 is among the most extreme examples of globular cluster–rich galaxies found so far. Here we present new Hubble Space Telescope observations and analysis of this galaxy and its globular cluster system. We find that NGC 5846-UDG1 hosts 54 ± 9 globular clusters, three to four times more than any previously known galaxy with a similar luminosity and higher than reported in previous studies. With a galaxy luminosity ofLV,gal≈ 6 × 107L(M≈ 1.2 × 108M) and a total globular cluster luminosity ofLV,GCs≈ 7.6 × 106L, we find that the clusters currently comprise ∼13% of the total light. Taking into account the effects of mass loss from clusters during their formation and throughout their lifetime, we infer that most of the stars in the galaxy likely formed in globular clusters, and very little to no “normal” low-density star formation occurred. This result implies that the most extreme conditions during early galaxy formation promoted star formation in massive and dense clumps, in contrast to the dispersed star formation observed in galaxies today.


    The processes of star formation and feedback, regulating the cycle of matter between gas and stars on the scales of giant molecular clouds (GMCs; ∼100 pc), play a major role in governing galaxy evolution. Measuring the time-scales of GMC evolution is important to identify and characterize the specific physical mechanisms that drive this transition. By applying a robust statistical method to high-resolution CO and narrow-band H α imaging from the PHANGS survey, we systematically measure the evolutionary timeline from molecular clouds to exposed young stellar regions on GMC scales, across the discs of an unprecedented sample of 54 star-forming main-sequence galaxies (excluding their unresolved centres). We find that clouds live for about 1−3 GMC turbulence crossing times (5−30 Myr) and are efficiently dispersed by stellar feedback within 1−5 Myr once the star-forming region becomes partially exposed, resulting in integrated star formation efficiencies of 1−8 per cent. These ranges reflect physical galaxy-to-galaxy variation. In order to evaluate whether galactic environment influences GMC evolution, we correlate our measurements with average properties of the GMCs and their local galactic environment. We find several strong correlations that can be physically understood, revealing a quantitative link between galactic-scale environmental properties and the small-scale GMC evolution. Notably, the measured CO-visible cloudmore »lifetimes become shorter with decreasing galaxy mass, mostly due to the increasing presence of CO-dark molecular gas in such environment. Our results represent a first step towards a comprehensive picture of cloud assembly and dispersal, which requires further extension and refinement with tracers of the atomic gas, dust, and deeply embedded stars.

    « less

    The star formation efficiency (SFE) has been shown to vary across different environments, particularly within galactic starbursts and deep within the bulges of galaxies. Various quenching mechanisms may be responsible, ranging from galactic dynamics to feedback from active galactic nuclei (AGNs). Here, we use spatially resolved observations of warm ionized gas emission lines (Hβ, [O iii] λλ4959,5007, [N ii] λλ6548,6583, Hα and [S ii] λλ6716,6731) from the imaging Fourier transform spectrograph SITELLE at the Canada–France–Hawaii Telescope (CFHT) and cold molecular gas (12CO(2-1)) from the Atacama Large Millimeter/sub-millimeter Array (ALMA) to study the SFE in the bulge of the AGN-host galaxy NGC 3169. After distinguishing star-forming regions from AGN-ionized regions using emission-line ratio diagnostics, we measure spatially resolved molecular gas depletion times (τdep ≡1/SFE) with a spatial resolution of ≈100 pc within a galactocentric radius of 1.8 kpc. We identify a star-forming ring located at radii 1.25 ± 0.6 kpc with an average τdep of 0.3 Gyr. At radii <0.9 kpc, however, the molecular gas surface densities and depletion times increase with decreasing radius, the latter reaching approximately 2.3 Gyr at a radius ≈500 pc. Based on analyses of the gas kinematics and comparisons with simulations, we identify AGN feedback, bulge morphology and dynamics as the possible causes of the radial profile ofmore »SFE observed in the central region of NGC 3169.

    « less
  6. Abstract The CO-to-H 2 conversion factor ( α CO ) is critical to studying molecular gas and star formation in galaxies. The value of α CO has been found to vary within and between galaxies, but the specific environmental conditions that cause these variations are not fully understood. Previous observations on ~kiloparsec scales revealed low values of α CO in the centers of some barred spiral galaxies, including NGC 3351. We present new Atacama Large Millimeter/submillimeter Array Band 3, 6, and 7 observations of 12 CO, 13 CO, and C 18 O lines on 100 pc scales in the inner ∼2 kpc of NGC 3351. Using multiline radiative transfer modeling and a Bayesian likelihood analysis, we infer the H 2 density, kinetic temperature, CO column density per line width, and CO isotopologue abundances on a pixel-by-pixel basis. Our modeling implies the existence of a dominant gas component with a density of 2–3 × 10 3 cm −3 in the central ∼1 kpc and a high temperature of 30–60 K near the nucleus and near the contact points that connect to the bar-driven inflows. Assuming a CO/H 2 abundance of 3 × 10 −4 , our analysis yields α CO ∼more »0.5–2.0 M ⊙ (K km s −1 pc 2 ) −1 with a decreasing trend with galactocentric radius in the central ∼1 kpc. The inflows show a substantially lower α CO ≲ 0.1 M ⊙ (K km s −1 pc 2 ) −1 , likely due to lower optical depths caused by turbulence or shear in the inflows. Over the whole region, this gives an intensity-weighted α CO of ∼1.5 M ⊙ (K km s −1 pc 2 ) −1 , which is similar to previous dust-modeling-based results at kiloparsec scales. This suggests that low α CO on kiloparsec scales in the centers of some barred galaxies may be due to the contribution of low-optical-depth CO emission in bar-driven inflows.« less
    Free, publicly-accessible full text available January 1, 2023
  7. ABSTRACT G0.253+0.016, commonly referred to as ‘the Brick’ and located within the Central Molecular Zone, is one of the densest (≈103–4 cm−3) molecular clouds in the Galaxy to lack signatures of widespread star formation. We set out to constrain the origins of an arc-shaped molecular line emission feature located within the cloud. We determine that the arc, centred on $\lbrace l_{0},b_{0}\rbrace =\lbrace 0{_{.}^{\circ}} 248,\, 0{_{.}^{\circ}} 018\rbrace$, has a radius of 1.3 pc and kinematics indicative of the presence of a shell expanding at $5.2^{+2.7}_{-1.9}$ $\mathrm{\, km\, s}^{-1}$. Extended radio continuum emission fills the arc cavity and recombination line emission peaks at a similar velocity to the arc, implying that the molecular gas and ionized gas are physically related. The inferred Lyman continuum photon rate is NLyC = 1046.0–1047.9 photons s−1, consistent with a star of spectral type B1-O8.5, corresponding to a mass of ≈12–20 M⊙. We explore two scenarios for the origin of the arc: (i) a partial shell swept up by the wind of an interloper high-mass star and (ii) a partial shell swept up by stellar feedback resulting from in situ star formation. We favour the latter scenario, finding reasonable (factor of a few) agreement between its morphology, dynamics, and energetics and those predicted formore »an expanding bubble driven by the wind from a high-mass star. The immediate implication is that G0.253+0.016 may not be as quiescent as is commonly accepted. We speculate that the cloud may have produced a ≲103 M⊙ star cluster ≳0.4 Myr ago, and demonstrate that the high-extinction and stellar crowding observed towards G0.253+0.016 may help to obscure such a star cluster from detection.« less
    Free, publicly-accessible full text available December 17, 2022
  8. ABSTRACT In the centres of the Milky Way and M83, the global environmental properties thought to control star formation are very similar. However, M83’s nuclear star formation rate (SFR), as estimated by synchrotron and H α emission, is an order of magnitude higher than the Milky Way’s. To understand the origin of this difference we use ALMA observations of HCN (1 − 0) and HCO+ (1 − 0) to trace the dense gas at the size scale of individual molecular clouds (0.54 arcsec, 12 pc) in the inner ∼500 pc of M83, and compare this to gas clouds at similar resolution and galactocentric radius in the Milky Way. We find that both the overall gas distribution and the properties of individual clouds are very similar in the two galaxies, and that a common mechanism may be responsible for instigating star formation in both circumnuclear rings. Given the considerable similarity in gas properties, the most likely explanation for the order of magnitude difference in SFR is time variability, with the Central Molecular Zone (CMZ) currently being at a more quiescent phase of its star formation cycle. We show M83’s SFR must have been an order of magnitude higher 5–7 Myr ago. M83’s ‘starburst’ phase was highly localized, bothmore »spatially and temporally, greatly increasing the feedback efficiency and ability to drive galactic-scale outflows. This highly dynamic nature of star formation and feedback cycles in galaxy centres means (i) modelling and interpreting observations must avoid averaging over large spatial areas or time-scales, and (ii) understanding the multiscale processes controlling these cycles requires comparing snapshots of a statistical sample of galaxies in different evolutionary stages.« less
  9. Abstract

    The goal of the Ariel space mission is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. The planetary bulk and atmospheric compositions bear the marks of the way the planets formed: Ariel’s observations will therefore provide an unprecedented wealth of data to advance our understanding of planet formation in our Galaxy. A number of environmental and evolutionary factors, however, can affect the final atmospheric composition. Here we provide a concise overview of which factors and effects of the star and planet formation processes can shape the atmospheric compositions that will be observed by Ariel, and highlight how Ariel’s characteristics make this mission optimally suited to address this very complex problem.

  10. Abstract We measure the low- J CO line ratios R 21 ≡ CO (2–1)/CO (1–0), R 32 ≡ CO (3–2)/CO (2–1), and R 31 ≡CO (3–2)/CO (1–0) using whole-disk CO maps of nearby galaxies. We draw CO (2–1) from PHANGS-ALMA, HERACLES, and follow-up IRAM surveys; CO (1–0) from COMING and the Nobeyama CO Atlas of Nearby Spiral Galaxies; and CO (3–2) from the James Clerk Maxwell Telescope Nearby Galaxy Legacy Survey and Atacama Pathfinder Experiment Large APEX Sub-Millimetre Array mapping. All together, this yields 76, 47, and 29 maps of R 21 , R 32 , and R 31 at 20″ ∼ 1.3 kpc resolution, covering 43, 34, and 20 galaxies. Disk galaxies with high stellar mass, log ( M ⋆ / M ⊙ ) = 10.25 – 11 , and star formation rate (SFR) = 1–5 M ⊙ yr −1 , dominate the sample. We find galaxy-integrated mean values and a 16%–84% range of R 21 = 0.65 (0.50–0.83), R 32 = 0.50 (0.23–0.59), and R 31 = 0.31 (0.20–0.42). We identify weak trends relating galaxy-integrated line ratios to properties expected to correlate with excitation, including SFR/ M ⋆ and SFR/ L CO . Within galaxies, we measure centralmore »enhancements with respect to the galaxy-averaged value of ∼ 0.18 − 0.14 + 0.09 dex for R 21 , 0.27 − 0.15 + 0.13 dex for R 31 , and 0.08 − 0.09 + 0.11 dex for R 32 . All three line ratios anticorrelate with galactocentric radius and positively correlate with the local SFR surface density and specific SFR, and we provide approximate fits to these relations. The observed ratios can be reasonably reproduced by models with low temperature, moderate opacity, and moderate densities, in good agreement with expectations for the cold interstellar medium. Because the line ratios are expected to anticorrelate with the CO (1–0)-to-H 2 conversion factor, α CO 1 − 0 , these results have general implications for the interpretation of CO emission from galaxies.« less
    Free, publicly-accessible full text available March 1, 2023