skip to main content

Title: Kinematics of Galactic Centre clouds shaped by shear-seeded solenoidal turbulence

The Central Molecular Zone (CMZ; the central ∼500 pc of the Galaxy) is a kinematically unusual environment relative to the Galactic disc, with high-velocity dispersions and a steep size–linewidth relation of the molecular clouds. In addition, the CMZ region has a significantly lower star formation rate (SFR) than expected by its large amount of dense gas. An important factor in explaining the low SFR is the turbulent state of the star-forming gas, which seems to be dominated by rotational modes. However, the turbulence driving mechanism remains unclear. In this work, we investigate how the Galactic gravitational potential affects the turbulence in CMZ clouds. We focus on the CMZ cloud G0.253+0.016 (‘the Brick’), which is very quiescent and unlikely to be kinematically dominated by stellar feedback. We demonstrate that several kinematic properties of the Brick arise naturally in a cloud-scale hydrodynamics simulation, that takes into account the Galactic gravitational potential. These properties include the line-of-sight velocity distribution, the steepened size–linewidth relation, and the predominantly solenoidal nature of the turbulence. Within the simulation, these properties result from the Galactic shear in combination with the cloud’s gravitational collapse. This is a strong indication that the Galactic gravitational potential plays a crucial role in shaping the CMZ gas kinematics, and is a major contributor to suppressing the SFR, by inducing predominantly solenoidal turbulent modes.

more » « less
Award ID(s):
2206511 2142300 2008101
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 962-968
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    We present a study of molecular structures (clumps and clouds) in the dwarf galaxy NGC 404 using high-resolution (≈0.86 × 0.51 pc2) Atacama Large Millimeter/sub-millimeter Array 12CO(2-1) observations. We find two distinct regions in NGC 404: a gravitationally stable central region (Toomre parameter Q = 3–30) and a gravitationally unstable molecular ring (Q ≲ 1). The molecular structures in the central region have a steeper size–linewidth relation and larger virial parameters than those in the molecular ring, suggesting gas is more turbulent in the former. In the molecular ring, clumps exhibit a shallower mass–size relation and larger virial parameters than clouds, implying density structures and dynamics are regulated by different physical mechanisms at different spatial scales. We construct an analytical model of clump–clump collisions to explain the results in the molecular ring. We propose that clump–clump collisions are driven by gravitational instabilities coupled with galactic shear, which lead to a population of clumps whose accumulation lengths (i.e. average separations) are approximately equal to their tidal radii. Our model-predicted clump masses and sizes (and mass–size relation) and turbulence energy injection rates (and size–linewidth relation) match the observations in the molecular ring very well, suggesting clump–clump collisions are the main mechanism regulating clump properties and gas turbulence in that region. As expected, our collision model does not apply to the central region, where turbulence is likely driven by clump migration.

    more » « less
  2. Abstract

    Magnetic fields of molecular clouds in the central molecular zone (CMZ) have been relatively under-observed at sub-parsec resolution. Here, we report JCMT/POL2 observations of polarized dust emission in the CMZ, which reveal magnetic field structures in dense gas at ∼0.5 pc resolution. The 11 molecular clouds in our sample include two in the western part of the CMZ (Sgr C and a farside cloud candidate), four around the Galactic longitude 0 (the 50 km s−1cloud, CO 0.02−0.02, theStone, and theSticksandStrawamong the Three Little Pigs), and five along the Dust Ridge (G0.253+0.016, clouds b, c, d, and e/f), for each of which we estimate the magnetic field strength using the angular dispersion function method. The morphologies of magnetic fields in the clouds suggest potential imprints of feedback from expanding Hiiregions and young massive star clusters. A moderate correlation between the total viral parameter versus the star formation rate (SFR) and the dense gas fraction of the clouds is found. A weak correlation between the mass-to-flux ratio and the SFR, and a weak anticorrelation between the magnetic field and the dense gas fraction are also found. Comparisons between magnetic fields and other dynamic components in clouds suggest a more dominant role of self-gravity and turbulence in determining the dynamical states of the clouds and affecting star formation at the studied scales.

    more » « less

    Turbulence plays a crucial role in shaping the structure of the interstellar medium. The ratio of the three-dimensional density contrast ($\sigma _{\rho /\rho _0}$) to the turbulent sonic Mach number ($\mathcal {M}$) of an isothermal, compressible gas describes the ratio of solenoidal to compressive modes in the turbulent acceleration field of the gas, and is parameterized by the turbulence driving parameter: $b=\sigma _{\rho /\rho _0}/\mathcal {M}$. The turbulence driving parameter ranges from b = 1/3 (purely solenoidal) to b = 1 (purely compressive), with b = 0.38 characterizing the natural mixture (1/3 compressive, 2/3 solenoidal) of the two driving modes. Here, we present a new method for recovering $\sigma _{\rho /\rho _0}$, $\mathcal {M}$, and b, from observations on galactic scales, using a roving kernel to produce maps of these quantities from column density and centroid velocity maps. We apply our method to high-resolution ${\rm H}\,\rm{\small I}$ emission observations of the Small Magellanic Cloud (SMC) from the GASKAP-HI survey. We find that the turbulence driving parameter varies between b ∼ 0.3 and 1.0 within the main body of the SMC, but the median value converges to b ∼ 0.51, suggesting that the turbulence is overall driven more compressively (b > 0.38). We observe no correlation between the b parameter and ${\rm H}\,\rm{\small I}$ or H α intensity, indicating that compressive driving of ${\rm H}\,\rm{\small I}$ turbulence cannot be determined solely by observing ${\rm H}\,\rm{\small I}$ or H α emission density, and that velocity information must also be considered. Further investigation is required to link our findings to potential driving mechanisms such as star-formation feedback, gravitational collapse, or cloud–cloud collisions.

    more » « less
  4. Abstract

    CMZoom survey observations with the Submillimeter Array are analyzed to describe the virial equilibrium (VE) and star-forming potential of 755 clumps in 22 clouds in the Central Molecular Zone (CMZ) of the Milky Way. In each cloud, nearly all clumps follow the column density–mass trendNMs, wheres= 0.38 ± 0.03 is near the pressure-bounded limitsp= 1/3. This trend is expected when gravitationally unbound clumps in VE have similar velocity dispersion and external pressure. Nine of these clouds also harbor one or two distinctly more massive clumps. These properties allow a VE model of bound and unbound clumps in each cloud, where the most massive clump has the VE critical mass. These models indicate that 213 clumps have velocity dispersion 1–2 km s−1, mean external pressure (0.5–4) × 108cm−3K, bound clump fraction 0.06, and typical virial parameterα= 4–15. These mostly unbound clumps may be in VE with their turbulent cloud pressure, possibly driven by inflow from the Galactic bar. In contrast, most Sgr B2 clumps are bound according to their associated sources andNMtrends. When the CMZ clumps are combined into mass distributions, their typical power-law slope is analyzed with a model of stopped accretion. It also indicates that most clumps are unbound and cannot grow significantly, due to their similar timescales of accretion and dispersal, ∼0.2 Myr. Thus, virial and dynamical analyses of the most extensive clump census available indicate that star formation in the CMZ may be suppressed by a significant deficit of gravitationally bound clumps.

    more » « less
  5. ABSTRACT In the centres of the Milky Way and M83, the global environmental properties thought to control star formation are very similar. However, M83’s nuclear star formation rate (SFR), as estimated by synchrotron and H α emission, is an order of magnitude higher than the Milky Way’s. To understand the origin of this difference we use ALMA observations of HCN (1 − 0) and HCO+ (1 − 0) to trace the dense gas at the size scale of individual molecular clouds (0.54 arcsec, 12 pc) in the inner ∼500 pc of M83, and compare this to gas clouds at similar resolution and galactocentric radius in the Milky Way. We find that both the overall gas distribution and the properties of individual clouds are very similar in the two galaxies, and that a common mechanism may be responsible for instigating star formation in both circumnuclear rings. Given the considerable similarity in gas properties, the most likely explanation for the order of magnitude difference in SFR is time variability, with the Central Molecular Zone (CMZ) currently being at a more quiescent phase of its star formation cycle. We show M83’s SFR must have been an order of magnitude higher 5–7 Myr ago. M83’s ‘starburst’ phase was highly localized, both spatially and temporally, greatly increasing the feedback efficiency and ability to drive galactic-scale outflows. This highly dynamic nature of star formation and feedback cycles in galaxy centres means (i) modelling and interpreting observations must avoid averaging over large spatial areas or time-scales, and (ii) understanding the multiscale processes controlling these cycles requires comparing snapshots of a statistical sample of galaxies in different evolutionary stages. 
    more » « less