Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In freshwater ecosystems, consumers can play large roles in nutrient cycling by modifying nutrient availability for autotrophic and heterotrophic microbes. Nutrients released by consumers directly supportgreen food websbased on primary production andbrown food websbased on decomposition. While much research has focused on impacts of consumer driven nutrient dynamics on green food webs, less attention has been given to studying the effects of these dynamics on brown food webs.Freshwater mussels (Bivalvia: Unionidae) can dominate benthic biomass in aquatic systems as they often occur in dense aggregations that create biogeochemical hotspots that can control ecosystem structure and function through nutrient release. However, despite functional similarities as filter‐feeders, mussels exhibit variation in nutrient excretion and tissue stoichiometry due in part to their phylogenetic origin. Here, we conducted a mesocosm experiment to evaluate how communities of three phylogenetically distinct species of mussels individually and collectively influence components of green and brown food webs.We predicted that the presence of mussels would elicit a positive response in both brown and green food webs by providing nutrients and energy via excretion and biodeposition to autotrophic and heterotrophic microbes. We also predicted that bottom‐up provisioning of nutrients would vary among treatments as a result of stoichiometric differences of species combinations, and that increasing species richness would lead to greater ecosystem functioning through complementarity resulting from greater trait diversity.Our results show that mussels affect the functioning of green and brown food webs through altering nutrient availability for both autotrophic and heterotrophic microbes. These effects are likely to be driven by phylogenetic constraints on tissue nutrient stoichiometry and consequential excretion stoichiometry, which can have functional effects on ecosystem processes. Our study highlights the importance of measuring multiple functional responses across a gradient of diversity in ecologically similar consumers to gain a more holistic view of aquatic food webs.more » « less
-
Abstract The United States of America has a diverse collection of freshwater mussels comprising 301 species distributed among 59 genera and two families (Margaritiferidae and Unionidae), each having a unique suite of traits. Mussels are among the most imperilled animals and are critical components of their ecosystems, and successful management, conservation and research requires a cohesive and widely accessible data source. Although trait-based analysis for mussels has increased, only a small proportion of traits reflecting mussel diversity in this region has been collated. Decentralized and non-standardized trait information impedes large-scale analysis. Assembling trait data in a synthetic dataset enables comparison across species and lineages and identification of data gaps. We collated data from the primary literature, books, state and federal reports, theses and dissertations, and museum collections into a centralized dataset covering information on taxonomy, morphology, reproductive ecology and life history, fish hosts, habitats, thermal tolerance, geographic distribution, available genetic information, and conservation status. By collating these traits, we aid researchers in assessing variation in mussel traits and modelling ecosystem change.more » « less
An official website of the United States government
