skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kumar, Rishabh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Building on previous constructions examining how a collection of small, locally interacting quantum systems might emerge via spontaneous symmetry breaking from a single-particle system of high dimension, we consider a larger family of geometric loss functionals and explicitly construct several classes of critical metrics which “know about qubits” (KAQ). The loss functional consists of the Ricci scalar with the addition of the Gauss-Bonnet term, which introduces an order parameter that allows for spontaneous symmetry breaking. The appeal of this method is two-fold: (i) the Ricci scalar has already been shown to have KAQ critical metrics and (ii) exact equations of motions are known for loss functionals with generic curvature terms up to two derivatives. We show that KAQ critical metrics, which are solutions to the equations of motion in the space of left-invariant metrics with fixed determinant, exist for loss functionals that include the Gauss-Bonnet term. We find that exploiting the subalgebra structure leads us to natural classes of KAQ metrics which contain the familiar distributions (GUE, GOE, GSE) for random Hamiltonians. We introduce tools for this analysis that will allow for straightfoward, although numerically intensive, extension to other loss functionals and higher-dimension systems. 
    more » « less
  2. We introduce a mathematical framework for symmetry-resolved entanglement entropy with a non-Abelian symmetry group. To obtain a reduced density matrix that is block-diagonal in the non-Abelian charges, we define subsystems operationally in terms of subalgebras of invariant observables. We derive exact formulas for the average and the variance of the typical entanglement entropy for the ensemble of random pure states with fixed non-Abelian charges. We focus on compact, semisimple Lie groups. We show that, compared to the Abelian case, new phenomena arise from the interplay of locality and non-Abelian symmetry, such as the asymmetry of the entanglement entropy under subsystem exchange, which we show in detail by computing the Page curve of a many-body system with SU(2) symmetry. 
    more » « less