skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-Abelian symmetry-resolved entanglement entropy
We introduce a mathematical framework for symmetry-resolved entanglement entropy with a non-Abelian symmetry group. To obtain a reduced density matrix that is block-diagonal in the non-Abelian charges, we define subsystems operationally in terms of subalgebras of invariant observables. We derive exact formulas for the average and the variance of the typical entanglement entropy for the ensemble of random pure states with fixed non-Abelian charges. We focus on compact, semisimple Lie groups. We show that, compared to the Abelian case, new phenomena arise from the interplay of locality and non-Abelian symmetry, such as the asymmetry of the entanglement entropy under subsystem exchange, which we show in detail by computing the Page curve of a many-body system with SU(2) symmetry.  more » « less
Award ID(s):
2207851
PAR ID:
10599205
Author(s) / Creator(s):
; ;
Publisher / Repository:
SciPost Phys. 17 (2024) 5, 127
Date Published:
Journal Name:
SciPost Physics
Volume:
17
Issue:
5
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. (3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible fault-tolerant logical operations in topological quantum error-correcting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension-2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of \mathbb{Z}_2 ℤ 2 gauge theory with fermionic charges, in \mathbb{Z}_2 \times \mathbb{Z}_2 ℤ 2 × ℤ 2 gauge theory with bosonic charges, and also in non-Abelian discrete gauge theories based on dihedral ( D_n D n ) and alternating ( A_6 A 6 ) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an H^4 H 4 cohomology class that characterizes part of an underlying 3-group symmetry of the topological order. The equations involving background gauge fields for the 3-group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with non-Abelian flux loops (defining part of a non-invertible higher symmetry), examples of non-invertible codimension-2 defects, and examples of the interplay of codimension-2 defects with codimension-1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D A_6 A 6 gauge theory. 
    more » « less
  2. Motivated by recent development of the concept of the disorder operator and its relation with entanglement entropy in bosonic systems, here we show the disorder operator successfully probes many aspects of quantum entanglement in fermionic many-body systems. From both analytical and numerical computations in free and interacting fermion systems in 1D and 2D, we find the disorder operator and the entanglement entropy exhibit similar universal scaling behavior, as a function of the boundary length of the subsystem, but with subtle yet important differences. In 1D they both follow the log(L) scaling behavior with the coefficient determined by the Luttinger parameter for disorder operator, and the conformal central charge for entanglement entropy. In 2D they both show the universal L\log(L) scaling behavior in free and interacting Fermi liquid states, with the coefficients depending on the geometry of the Fermi surfaces. However at a 2D quantum critical point with non-Fermi-liquid state, extra symmetry information is needed in the design of the disorder operator, so as to reveal the critical fluctuations as does the entanglement entropy. Our results demonstrate the fermion disorder operator can be used to probe quantum many-body entanglement related to global symmetry, and provide new tools to explore the still largely unknown territory of highly entangled fermion quantum matter in 2 or higher dimensions. 
    more » « less
  3. Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size. 
    more » « less
  4. We study the entanglement dynamics of quantum automaton (QA) circuits in the presence of U(1) symmetry. We find that the second Rényi entropy grows diffusively with a logarithmic correction as t ln t , saturating the bound established by Huang \cite{Huang_2020}. Thanks to the special feature of QA circuits, we understand the entanglement dynamics in terms of a classical bit string model. Specifically, we argue that the diffusive dynamics stems from the rare slow modes containing extensively long domains of spin 0s or 1s. Additionally, we investigate the entanglement dynamics of monitored QA circuits by introducing a composite measurement that preserves both the U(1) symmetry and properties of QA circuits. We find that as the measurement rate increases, there is a transition from a volume-law phase where the second Rényi entropy persists the diffusive growth (up to a logarithmic correction) to a critical phase where it grows logarithmically in time. This interesting phenomenon distinguishes QA circuits from non-automaton circuits such as U(1)-symmetric Haar random circuits, where a volume-law to an area-law phase transition exists, and any non-zero rate of projective measurements in the volume-law phase leads to a ballistic growth of the Rényi entropy. 
    more » « less
  5. A bstract It is widely believed that consistent theories of quantum gravity satisfy two basic kinematic constraints: they are free from any global symmetry, and they contain a complete spectrum of gauge charges. For compact, abelian gauge groups, completeness follows from the absence of a 1-form global symmetry. However, this correspondence breaks down for more general gauge groups, where the breaking of the 1-form symmetry is insufficient to guarantee a complete spectrum. We show that the correspondence may be restored by broadening our notion of symmetry to include non-invertible topological operators, and prove that their absence is sufficient to guarantee a complete spectrum for any compact, possibly disconnected gauge group. In addition, we prove an analogous statement regarding the completeness of twist vortices : codimension-2 objects defined by a discrete holonomy around their worldvolume, such as cosmic strings in four dimensions. We discuss how this correspondence is modified in various, more general contexts, including non-compact gauge groups, Higgsing of gauge theories, and the addition of Chern-Simons terms. Finally, we discuss the implications of our results for the Swampland program, as well as the phenomenological implications of the existence of twist strings. 
    more » « less