skip to main content

Search for: All records

Creators/Authors contains: "Kumar, Santosh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Passive detection of risk factors (that may influence unhealthy or adverse behaviors) via wearable and mobile sensors has created new opportunities to improve the effectiveness of behavioral interventions. A key goal is to find opportune moments for intervention by passively detecting rising risk of an imminent adverse behavior. But, it has been difficult due to substantial noise in the data collected by sensors in the natural environment and a lack of reliable label assignment of low- and high-risk states to the continuous stream of sensor data. In this paper, we propose an event-based encoding of sensor data to reduce the effect of noises and then present an approach to efficiently model the historical influence of recent and past sensor-derived contexts on the likelihood of an adverse behavior. Next, to circumvent the lack of any confirmed negative labels (i.e., time periods with no high-risk moment), and only a few positive labels (i.e., detected adverse behavior), we propose a new loss function. We use 1,012 days of sensor and self-report data collected from 92 participants in a smoking cessation field study to train deep learning models to produce a continuous risk estimate for the likelihood of an impending smoking lapse. The risk dynamics produced by the model show that risk peaks an average of 44 minutes before a lapse. Simulations on field study data show that using our model can create intervention opportunities for 85% of lapses with 5.5 interventions per day. 
    more » « less
  2. Public release of wrist-worn motion sensor data is growing. They enable and accelerate research in developing new algorithms to passively track daily activities, resulting in improved health and wellness utilities of smartwatches and activity trackers. But, when combined with sensitive attribute inference attack and linkage attack via re-identification of the same user in multiple datasets, undisclosed sensitive attributes can be revealed to unintended organizations with potentially adverse consequences for unsuspecting data contributing users. To guide both users and data collecting researchers, we characterize the re-identification risks inherent in motion sensor data collected from wrist-worn devices in users' natural environment. For this purpose, we use an open-set formulation, train a deep learning architecture with a new loss function, and apply our model to a new data set consisting of 10 weeks of daily sensor wearing by 353 users. We find that re-identification risk increases with an increase in the activity intensity. On average, such risk is 96% for a user when sharing a full day of sensor data. 
    more » « less
  3. null (Ed.)
    Ensuring that all the teeth surfaces are adequately covered during daily brushing can reduce the risk of several oral diseases. In this paper, we propose the mTeeth model to detect teeth surfaces being brushed with a manual toothbrush in the natural free-living environment using wrist-worn inertial sensors. To unambiguously label sensor data corresponding to different surfaces and capture all transitions that last only milliseconds, we present a lightweight method to detect the micro-event of brushing strokes that cleanly demarcates transitions among brushing surfaces. Using features extracted from brushing strokes, we propose a Bayesian Ensemble method that leverages the natural hierarchy among teeth surfaces and patterns of transition among them. For training and testing, we enrich a publicly-available wrist-worn inertial sensor dataset collected from the natural environment with time-synchronized precise labels of brushing surface timings and moments of transition. We annotate 10,230 instances of brushing on different surfaces from 114 episodes and evaluate the impact of wide between-person and within-person between-episode variability on machine learning model's performance for brushing surface detection. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract

    Self-reports indicate that stress increases the risk for smoking; however, intensive data from sensors can provide a more nuanced understanding of stress in the moments leading up to and following smoking events. Identifying personalized dynamical models of stress-smoking responses can improve characterizations of smoking responses following stress, but techniques used to identify these models require intensive longitudinal data. This study leveraged advances in wearable sensing technology and digital markers of stress and smoking to identify person-specific models of stress and smoking system dynamics by considering stress immediately before, during, and after smoking events. Adult smokers (n = 45) wore the AutoSense chestband (respiration-inductive plethysmograph, electrocardiogram, accelerometer) with MotionSense (accelerometers, gyroscopes) on each wrist for three days prior to a quit attempt. The odds of minute-level smoking events were regressed on minute-level stress probabilities to identify person-specific dynamic models of smoking responses to stress. Simulated pulse responses to a continuous stress episode revealed a consistent pattern of increased odds of smoking either shortly after the beginning of the simulated stress episode or with a delay, for all participants. This pattern is followed by a dramatic reduction in the probability of smoking thereafter, for about half of the participants (49%). Sensor-detected stress probabilities indicate a vulnerability for smoking that may be used as a tailoring variable for just-in-time interventions to support quit attempts.

    more » « less
  7. null (Ed.)
    Stressful conversation is a frequently occurring stressor in our daily life. Stressors not only adversely affect our physical and mental health but also our relationships with family, friends, and coworkers. In this paper, we present a model to automatically detect stressful conversations using wearable physiological and inertial sensors. We conducted a lab and a field study with cohabiting couples to collect ecologically valid sensor data with temporally-precise labels of stressors. We introduce the concept of stress cycles, i.e., the physiological arousal and recovery, within a stress event. We identify several novel features from stress cycles and show that they exhibit distinguishing patterns during stressful conversations when compared to physiological response due to other stressors. We observe that hand gestures also show a distinct pattern when stress occurs due to stressful conversations. We train and test our model using field data collected from 38 participants. Our model can determine whether a detected stress event is due to a stressful conversation with an F1-score of 0.83, using features obtained from only one stress cycle, facilitating intervention delivery within 3.9 minutes since the start of a stressful conversation. 
    more » « less
  8. null (Ed.)