Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 22, 2026
-
In applying deep learning for malware classifica- tion, it is crucial to account for the prevalence of malware evolution, which can cause trained classifiers to fail on drifted malware. Existing solutions to address concept drift use active learning. They select new samples for analysts to label and then retrain the classifier with the new labels. Our key finding is that the current retraining techniques do not achieve optimal results. These techniques overlook that updating the model with scarce drifted samples requires learning features that remain consistent across pre-drift and post-drift data. The model should thus be able to disregard specific features that, while beneficial for the classification of pre-drift data, are absent in post-drift data, thereby preventing prediction degradation. In this paper, we propose a new technique for detecting and classifying drifted malware that learns drift-invariant features in malware control flow graphs by leveraging graph neural networks with adversarial domain adaptation. We compare it with existing model retraining methods in active learning-based malware detection systems and other domain adaptation techniques from the vision domain. Our approach significantly improves drifted malware detection on publicly available benchmarks and real-world malware databases reported daily by security companies in 2024. We also tested our approach in predicting multiple malware families drifted over time. A thorough evaluation shows that our approach outperforms the state-of-the-art approaches.more » « lessFree, publicly-accessible full text available February 24, 2026
-
Free, publicly-accessible full text available November 4, 2025
-
The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infras- tructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vul- nerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose GRAPHENE, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, GRAPHENE performs a comprehensive secu- rity assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, it evaluates the exploitabil- ity of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, GRAPHENE delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in GRAPHENE, showcasing the systematic approach adopted for conducting this thorough security analysis.more » « less
-
Internet of Things (IoT) cyber threats, exemplified by jackware and crypto mining, underscore the vulnerability of IoT devices. Due to the multi-step nature of many attacks, early detection is vital for a swift response and preventing malware propagation. However, accurately detecting early-stage attacks is challenging, as attackers employ stealthy, zero-day, or adversarial machine learning to evade detection. To enhance security, we propose ARIoTEDef, an Adversarially Robust IoT Early Defense system, which identifies early-stage infections and evolves autonomously. It models multi-stage attacks based on a cyber kill chain and maintains stage-specific detectors. When anomalies in the later action stage emerge, the system retroactively analyzes event logs using an attention-based sequence-to-sequence model to identify early infections. Then, the infection detector is updated with information about the identified infections. We have evaluated ARIoTEDef against multi-stage attacks, such as the Mirai botnet. Results show that the infection detector’s average F1 score increases from 0.31 to 0.87 after one evolution round. We have also conducted an extensive analysis of ARIoTEDef against adversarial evasion attacks. Our results show that ARIoTEDef is robust and benefits from multiple rounds of evolution.more » « less
An official website of the United States government

Full Text Available