skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 24, 2026

Title: Revisiting Concept Drift in Windows Malware Detection: Adaptation to Real Drifted Malware with Minimal Samples
In applying deep learning for malware classifica- tion, it is crucial to account for the prevalence of malware evolution, which can cause trained classifiers to fail on drifted malware. Existing solutions to address concept drift use active learning. They select new samples for analysts to label and then retrain the classifier with the new labels. Our key finding is that the current retraining techniques do not achieve optimal results. These techniques overlook that updating the model with scarce drifted samples requires learning features that remain consistent across pre-drift and post-drift data. The model should thus be able to disregard specific features that, while beneficial for the classification of pre-drift data, are absent in post-drift data, thereby preventing prediction degradation. In this paper, we propose a new technique for detecting and classifying drifted malware that learns drift-invariant features in malware control flow graphs by leveraging graph neural networks with adversarial domain adaptation. We compare it with existing model retraining methods in active learning-based malware detection systems and other domain adaptation techniques from the vision domain. Our approach significantly improves drifted malware detection on publicly available benchmarks and real-world malware databases reported daily by security companies in 2024. We also tested our approach in predicting multiple malware families drifted over time. A thorough evaluation shows that our approach outperforms the state-of-the-art approaches.  more » « less
Award ID(s):
2229876
PAR ID:
10577393
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Network and Distributed System Security (NDSS) Symposium
Date Published:
Format(s):
Medium: X
Location:
San Diego, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine Learning (ML) is a key part of modern malware detection pipelines, but its application is not straightforward. It involves multiple practical challenges that are frequently unaddressed by the literature works. A key challenge is the heterogeneity of scenarios. Antivirus (AV) companies for instance operate under different performance constraints in the backend and in the endpoint, and with a diversity of datasets according to the country they operate in. In this paper, we evaluate the impact of these heterogeneous aspects by developing a classification pipeline for 3 datasets of 10K malware samples each collected by an AV company in the USA, Brazil, and Japan in the same period. We characterize the different requirements for these datasets and we show that a different number of features is required to reach the optimal detection rate in each scenario. We show that a global model combining the three datasets increases the detection of the three individual datasets. We propose using Federated Learning (FL) to build the global model and a distilling process to generate the local versions. We order the samples temporally to show that although retraining on concept drift detection helps recover the detection rate, only a FL approach can increase the detection rate. 
    more » « less
  2. Millions of new pieces of malicious software (i.e., malware) are introduced each year. This poses significant challenges for antivirus vendors, who use machine learning to detect and analyze malware, and must keep up with changes in the distribution while retaining knowledge of older variants. Continual learning (CL) holds the potential to address this challenge by relaxing the requirements of the incremental storage and computational costs of regularly retraining over all the collected data. Prior work, however, shows that CL techniques, which are designed primarily for computer vision tasks, fare poorly when applied to malware classification. To address these issues, we begin with an exploratory analysis of a typical malware dataset, which reveals that malware families are heterogeneous and difficult to characterize, requiring a wide variety of samples to learn a robust representation. Based on these findings, we propose Malware Analysis with Distribution-Aware Replay (MADAR), a CL framework that accounts for the unique properties and challenges of the malware data distribution. Through extensive evaluation on large-scale Windows and Android malware datasets, we show that MADAR significantly outperforms prior work. This highlights the importance of understanding domain characteristics when designing CL techniques and demonstrates a path forward for the malware analysis domain. 
    more » « less
  3. Malicious software (malware) classification offers a unique challenge for continual learning (CL) regimes due to the volume of new samples received on a daily basis and the evolution of malware to exploit new vulnerabilities. On a typical day, antivirus vendors receive hundreds of thousands of unique pieces of software, both malicious and benign, and over the course of the lifetime of a malware classifier, more than a billion samples can easily accumulate. Given the scale of the problem, sequential training using continual learning techniques could provide substantial benefits in reducing training and storage overhead. To date, however, there has been no exploration of CL applied to malware classification tasks. In this paper, we study 11 CL techniques applied to three malware tasks covering common incremental learning scenarios, including task, class, and domain incremental learning (IL). Specifically, using two realistic, large-scale malware datasets, we evaluate the performance of the CL methods on both binary malware classification (Domain-IL) and multi-class malware family classification (Task-IL and Class-IL) tasks. To our surprise, continual learning methods significantly underperformed naive Joint replay of the training data in nearly all settings – in some cases reducing accuracy by more than 70 percentage points. A simple approach of selectively replaying 20% of the stored data achieves better performance, with 50% of the training time compared to Joint replay. Finally, we discuss potential reasons for the unexpectedly poor performance of the CL techniques, with the hope that it spurs further research on developing techniques that are more effective in the malware classification domain. 
    more » « less
  4. Thanks to the numerous machine learning based malware detection (MLMD) research in recent years and the readily available online malware scanning system (e.g., VirusTotal), it becomes relatively easy to build a seemingly successful MLMD system using the following standard procedure: first prepare a set of ground truth data by checking with VirusTotal, then extract features from training dataset and build a machine learning detection model, and finally evaluate the model with a disjoint testing dataset. We argue that such evaluation methods do not expose the real utility of ML based malware detection in practice since the ML model is both built and tested on malware that are known at the time of training. The user could simply run them through VirusTotal just as how the researchers obtained the ground truth, instead of using the more sophisticated ML approach. However, ML based malware detection has the potential of identifying malware that has not been known at the time of training, which is the real value ML brings to this problem. We present experimentation study on how well a machine learning based malware detection system can achieve this. Our experiments showed that MLMD can consistently generate previously unknown malware knowledge, e.g., malware that is not detectable by existing malware detection systems at MLMD’s training time. Our research illustrates an ideal usage scenario for MLMD systems and demonstrates that such systems can benefit malware detection in practice. For example, by utilizing the new signals provided by the MLMD system and the detection capability of existing malware detection systems, we can more quickly uncover new malware variants or families. 
    more » « less
  5. null (Ed.)
    Machine learning-based malware detection systems are often vulnerable to evasion attacks, in which a malware developer manipulates their malicious software such that it is misclassified as benign. Such software hides some properties of the real class or adopts some properties of a different class by applying small perturbations. A special case of evasive malware hides by repackaging a bonafide benign mobile app to contain malware in addition to the original functionality of the app, thus retaining most of the benign properties of the original app. We present a novel malware detection system based on metamorphic testing principles that can detect such benign-seeming malware apps. We apply metamorphic testing to the feature representation of the mobile app, rather than to the app itself. That is, the source input is the original feature vector for the app and the derived input is that vector with selected features removed. If the app was originally classified benign, and is indeed benign, the output for the source and derived inputs should be the same class, i.e., benign, but if they differ, then the app is exposed as (likely) malware. Malware apps originally classified as malware should retain that classification, since only features prevalent in benign apps are removed. This approach enables the machine learning model to classify repackaged malware with reasonably few false negatives and false positives. Our training pipeline is simpler than many existing ML-based malware detection methods, as the network is trained end-to-end to jointly learn appropriate features and to perform classification. We pre-trained our classifier model on 3 million apps collected from the widely-used AndroZoo dataset. 1 We perform an extensive study on other publicly available datasets to show our approach’s effectiveness in detecting repackaged malware with more than 94% accuracy, 0.98 precision, 0.95 recall, and 0.96 F1 score. 
    more » « less