skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Laddha, Aditi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the minimum eigenvalue problem, we are given a collection of vectors and the goal is to pick a subset B to maximize the minimum eigenvalue of the matrix formed by the sum of their outer products. We give a -time randomized algorithm that finds an assignment subject to a partition constraint whose minimum eigenvalue is at least $$1-\epsilon$$ times the optimum, with high probability. As a byproduct, we also get a simple algorithm for an algorithmic version of Kadison-Singer problem. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  2. We study a unified approach and algorithm for constructive discrepancy minimization based on a stochastic process. By varying the parameters of the process, one can recover various state-of-the-art results. We demonstrate the flexibility of the method by deriving a discrepancy bound for smoothed instances, which interpolates between known bounds for worst-case and random instances. 
    more » « less
  3. null (Ed.)
  4. Buchin, Kevin; Colin de Verdi\` (Ed.)
    The Gibbs Sampler is a general method for sampling high-dimensional distributions, dating back to 1971. In each step of the Gibbs Sampler, we pick a random coordinate and re-sample that coordinate from the distribution induced by fixing all the other coordinates. While it has become widely used over the past half-century, guarantees of efficient convergence have been elusive. We show that for a convex body K in ℝⁿ with diameter D, the mixing time of the Coordinate Hit-and-Run (CHAR) algorithm on K is polynomial in n and D. We also give a lower bound on the mixing rate of CHAR, showing that it is strictly worse than hit-and-run and the ball walk in the worst case. 
    more » « less