skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Lai, Xiaojing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Incorporation of ferric iron in mantle silicates stabilizes different crystal structures and changes phase transition conditions, thus impacting seismic wave speeds and discontinuities. In MgSiO3-Fe2O3 mixtures, recent experiments indicate the coexistence of fully oxidized iron-rich (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 with Fe-poor silicate (wadsleyite or bridgmanite) and stishovite at 15 to 27 GPa and 1773 to 2000 K, conditions relevant to subducted lithosphere in the Earth’s transition zone and uppermost lower mantle. X-ray diffraction measurements show that (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 recovered from these conditions adopts the R3c LiNbO3-type structure, which transforms to the bridgmanite structure again between 18.3 GPa and 24.7 GPa at 300 K. Diffraction observations are used to obtain the equation of state of the LiNbO3-type phase up to 18.3 GPa. These observations combined with multi-anvil experiments suggest that the stable phase of (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 is bridgmanite at 15-27 GPa, which transforms on decompression to LiNbO3-type structure. Our calculation revealed that ordering of the ferric ion reduces the kinetic energy barrier of the transition between (Mg0.5Fe0.53+)(Fe0.53+Si0.5)O3 LiNbO3 structure and bridgmanite relative to the MgSiO3 akimotoite-bridgmanite system. Dense Fe3+-rich bridgmanite structure is thus stable at substantially shallower depths than MgSiO3 bridgmanite and would promote subduction. 
    more » « less
    Free, publicly-accessible full text available July 4, 2025
  2. Externally heated diamond anvil cells provide a stable and uniform thermal environment, making them a versatile device to simultaneously generate high-pressure and high-temperature conditions in various fields of research, such as condensed matter physics, materials science, chemistry, and geosciences. The present study features the Externally Heated Diamond ANvil Cell Experimentation (EH-DANCE) system, a versatile configuration consisting of a diamond anvil cell with a customized microheater for stable resistive heating, bidirectional pressure control facilitated by compression and decompression membranes, and a water-cooled enclosure suitable for vacuum and controlled atmospheres. This integrated system excels with its precise control of both pressure and temperature for mineral and materials science research under extreme conditions. We showcase the capabilities of the system through its successful application in the investigation of the melting temperature and thermal equation of state of high-pressure ice-VII at temperatures up to 1400 K. The system was also used to measure the elastic properties of solid ice-VII and liquid H2O using Brillouin scattering and Raman spectra of carbonates using Raman spectroscopy, highlighting the potential of the EH-DANCE system in high-pressure research. 
    more » « less
  3. Making consistent and precise octahedral pressure media is crucial for reproducible high-pressure experiments in the multi-anvil press. Here we report a new approach of casting octahedra using 3D-printed molds, and pressure calibrations for octahedra both with and without pre-existing gaskets (“fins”). The 3D-printed molds for casting octahedra from either Ceramacast 584-OF or 646 cement improve the reproducibility of the octahedra and allow for a pre-existing central hole (for the high-pressure cell assembly) in the final cast product. Pressure and temperature calibrations of the octahedra have been performed based on phase transitions in bismuth (Bi) and silica (SiO2), respectively, in order to determine the efficiency and reproducibility of pressure generation and thermal insulation for cast octahedra designed for use with 18/12, 14/8, and 10/5 multi-anvil assemblies. The pressure-generating efficiency of the 14/8 and 10/5 octahedra with pre-existing gaskets, cast from the 584-OF cement, is similar to that of the corresponding COMPRES (Consortium for Materials Properties Research in Earth Sciences) octahedra, and more efficient than pre-cast octahedra made from the same material but lacking pre-existing gaskets. The efficiency of pre-gasketed 18/12 octahedra made of the 646 cement is markedly lower than those of the 584 cement. However, the 18/12 large-volume octahedra, cast (with fins) from the ZrO2-based 646 cement, also provides efficient thermal insulation. Casting octahedral solid pressure media for multi-anvil experiments using 3D-printed “injection” molds is a low-cost and low failure-rate alternative for conducting reproducible experiments at high pressure in the multi-anvil apparatus. 
    more » « less
  4. Abstract The occurrences and cycling of slab‐originated carbon and hydrogen are considered to be controlled by their reactions with metallic iron from mantle disproportionation and slab serpentinization, to form Fe alloys containing carbon and hydrogen. Here we show experimental results on the phase relations and melting of the Fe‐C‐H system using laser‐heated diamond anvil cell and X‐ray diffraction techniques up to 72 GPa. The incorporation of hydrogen was found to lower the eutectic melting temperatures of Fe‐C alloy by ∼50–178 K at 20–70 GPa, facilitating the formation of metallic liquids in the deep mantle and thus enhancing the mobility and deep cycling of subducted carbon and hydrogen. Hydrogen also substitutes with carbon in Fe‐C metal to form hydride and diamond at relatively high‐temperature conditions (e.g., 42.6 GPa, >1885 K and 71.8 GPa, >1798 K). The hydrogen‐carbon‐enriched metallic liquids provide the necessary fluid environment for superdeep diamond growth. 
    more » « less