Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Broadband radio waves emitted from pulsars are distorted and delayed as they propagate toward the Earth due to interactions with the free electrons that compose the interstellar medium (ISM), with lower radio frequencies being more impacted than higher frequencies. Multipath propagation in the ISM results in both later times of arrival for the lower frequencies and causes the observed pulse to arrive with a broadened tail described via the pulse broadening function. We employ the CLEAN deconvolution technique to recover the pulse broadening timescale and by proxy the intrinsic pulse shape. This work expands upon previous descriptions of CLEAN deconvolution used in pulse broadening analyses by parameterizing the efficacy on simulated data and developing a suite of tests to establish which of a set of figures of merit leads to an automatic and consistent determination of the scattering timescale and its uncertainty. We compare our algorithm to the cyclic spectroscopy method of estimating the scattering timescale, specifically to the simulations performed in Dolch et al. (2021). We test our improved algorithm on the highly scattered millisecond pulsar J1903+0327, showing the scattering timescale to change over years, consistent with estimates of the refractive timescale of the pulsar.
-
Abstract Pulsar timing arrays (PTAs) are designed to detect low-frequency gravitational waves (GWs). GWs induce achromatic signals in PTA data, meaning that the timing delays do not depend on radio frequency. However, pulse arrival times are also affected by radio-frequency-dependent “chromatic” noise from sources such as dispersion measure (DM) and scattering delay variations. Furthermore, the characterization of GW signals may be influenced by the choice of chromatic noise model for each pulsar. To better understand this effect, we assess if and how different chromatic noise models affect the achromatic noise properties in each pulsar. The models we compare include existing DM models used by the North American Nanohertz Observatory for Gravitational waves (NANOGrav) and noise models used for the European PTA Data Release 2 (EPTA DR2). We perform this comparison using a subsample of six pulsars from the NANOGrav 15 yr data set, selecting the same six pulsars as from the EPTA DR2 six-pulsar data set. We find that the choice of chromatic noise model noticeably affects the achromatic noise properties of several pulsars. This is most dramatic for PSR J1713+0747, where the amplitude of its achromatic red noise lowers from
to , and the spectral index broadens from to . We also compare each pulsar's noise properties with those inferred from the EPTA DR2, using the same models. From the discrepancies, we identify potential areas where the noise models could be improved. These results highlight the potential for custom chromatic noise models to improve PTA sensitivity to GWs. -
Abstract The millisecond pulsar J1713+0747 underwent a sudden and significant pulse shape change between 2021 April 16 and 17 (MJDs 59320 and 59321). Subsequently, the pulse shape gradually recovered over the course of several months. We report the results of continued multifrequency radio observations of the pulsar made using the Canadian Hydrogen Intensity Mapping Experiment and the 100 m Green Bank Telescope in a 3 yr period encompassing the shape change event, between 2020 February and 2023 February. As of 2023 February, the pulse shape had returned to a state similar to that seen before the event, but with measurable changes remaining. The amplitude of the shape change and the accompanying time-of-arrival residuals display a strong nonmonotonic dependence on radio frequency, demonstrating that the event is neither a glitch (the effects of which should be independent of radio frequency,
ν ) nor a change in dispersion measure alone (which would produce a delay proportional toν −2). However, it does bear some resemblance to the two previous “chromatic timing events” observed in J1713+0747, as well as to a similar event observed in PSR J1643−1224 in 2015. -
Abstract The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons.