skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lamer, Katia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent studies have highlighted the importance of accurate meteorological conditions for urban transport and dispersion calculations. In this work, we present a novel scheme to compute the meteorological input in the Quick Urban & Industrial Complex () diagnostic urban wind solver to improve the characterization of upstream wind veer and shear in the Atmospheric Boundary Layer (ABL). The new formulation is based on a coupled set of Ordinary Differential Equations (ODEs) derived from the Reynolds Averaged Navier–Stokes (RANS) equations, and is fast to compute. Building upon recent progress in modeling the idealized ABL, we include effects from surface roughness, turbulent stress, Coriolis force, buoyancy and baroclinicity. We verify the performance of the new scheme with canonical Large Eddy Simulation (LES) tests with the GPU-accelerated FastEddyEquation missing<#comment/>solver in neutral, stable, unstable and baroclinic conditions with different surface roughness. Furthermore, we evaluate QUIC calculations with and without the new inflow scheme with real data from the Urban Threat Dispersion (UTD) field experiment, which includes Lidar-based wind measurements as well as concentration observations from multiple outdoor releases of a non-reactive tracer in downtown New York City. Compared to previous inflow capabilities that were limited to a constant wind direction with height, we show that the new scheme can model wind veer in the ABL and enhance the prediction of the surface cross-isobaric angle, improving evaluation statistics of simulated concentrations paired in time and space with UTD measurements. 
    more » « less
  2. Abstract. A large convection–cloud chamber has the potential to produce drizzle-sized droplets, thus offering a new opportunity to investigate aerosol–cloud–drizzle interactions at a fundamental level under controlled environmental conditions. One key measurement requirement is the development of methods to detect the low-concentration drizzle drops in such a large cloud chamber. In particular, remote sensing methods may overcome some limitations of in situ methods. Here, the potential of an ultrahigh-resolution radar to detect the radar return signal of a small drizzle droplet against the cloud droplet background signal is investigated. It is found that using a small sampling volume is critical to drizzle detection in a cloud chamber to allow a drizzle drop in the radar sampling volume to dominate over the background cloud droplet signal. For instance, a radar volume of 1 cubic centimeter (cm3) would enable the detection of drizzle embryos with diameter larger than 40 µm. However, the probability of drizzle sampling also decreases as the sample volume reduces, leading to a longer observation time. Thus, the selection of radar volume should consider both the signal power and the drizzle occurrence probability. Finally, observations from the Pi Convection–Cloud Chamber are used to demonstrate the single-drizzle-particle detection concept using small radar volume. The results presented in this study also suggest new applications of ultrahigh-resolution cloud radar for atmospheric sensing. 
    more » « less
  3. Abstract Clouds, crucial for understanding climate, begin with droplet formation from aerosols, but observations of this fleeting activation step are lacking in the atmosphere. Here we use a time-gated time-correlated single-photon counting lidar to observe cloud base structures at decimeter scales. Results show that the air–cloud interface is not a perfect boundary but rather a transition zone where the transformation of aerosol particles into cloud droplets occurs. The observed distributions of first-arriving photons within the transition zone reflect vertical development of a cloud, including droplet activation and condensational growth. Further, the highly resolved vertical profile of backscattered photons above the cloud base enables remote estimation of droplet concentration, an elusive but critical property to understanding aerosol–cloud interactions. Our results show the feasibility of remotely monitoring cloud properties at submeter scales, thus providing much-needed insights into the impacts of atmospheric pollution on clouds and aerosol-cloud interactions that influence climate. 
    more » « less
  4. Abstract National Aeronautics and Space Administration's Investigations of Convective Updrafts (INCUS) mission aims to document convective mass flux through changes in the radar reflectivity (ΔZ) in convective cores captured by a constellation of three Ka‐band radars sampling the same convective cells over intervals of 30, 90, and 120 s. Here, high spatiotemporal resolution observations of convective cores from surface‐based radars that use agile sampling techniques are used to evaluate aspects of the INCUS measurement approach using real observations. Analysis of several convective cells confirms that large coherent ΔZstructure with measurable signal (>5 dB) can occur in less than 30 s and are correlated with underlying convective motions. The analysis indicates that the INCUS mission radar footprint and along track sampling are adequate to capture most of the desirable ΔZsignals. This unique demonstration of reflectivity time‐lapse provides the framework for estimating convective mass flux independent from Doppler techniques with future radar observations. 
    more » « less
  5. Abstract A THz radar, with its wide bandwidth, is capable of high‐resolution imaging down to the centimeter scale. In this study, a THz radar is applied to detect hydrometeors generated in a spray chamber. The observed backscattering signals show fluctuations at centimeter scales, indicating various hydrometeor distribution patterns along the radar beam. A co‐located High‐Speed Imaging (HSI) sensor is used to measure the Drop Size Distributions (DSD) in the spray chamber. The radar sampling beam is well aligned with the HSI probes, allowing an objective comparison between the remote sensing and in situ observations. In this study, the observed radar power is compared with the power estimated from the HSI measurements. Results show great consistency, with power difference smaller than 0.5 dB. This study demonstrates the feasibility and great potential of using a THz radar for ultra‐high‐resolution observations of clouds in a laboratory facility, and in the real atmosphere. 
    more » « less
  6. Abstract Convective clouds play an important role in the Earth’s climate system and are a known source of extreme weather. Gaps in our understanding of convective vertical motions, microphysics, and precipitation across a full range of aerosol and meteorological regimes continue to limit our ability to predict the occurrence and intensity of these cloud systems. Towards improving predictability, the National Science Foundation (NSF) sponsored a large field experiment entitled “Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environment (ESCAPE).” ESCAPE took place between 30 May - 30 Sept. 2022 in the vicinity of Houston, TX because this area frequently experiences isolated deep convection that interacts with the region's mesoscale circulations and its range of aerosol conditions. ESCAPE focused on collecting observations of isolated deep convection through innovative sampling, and on developing novel analysis techniques. This included the deployment of two research aircraft, the National Research Council of Canada Convair-580 and the Stratton Park Engineering Company Learjet, which combined conducted 24 research flights from 30 May to 17 June. On the ground, three mobile X-band radars, and one mobile Doppler lidar truck equipped with soundings, were deployed from 30 May to 28 June. From 1 August to 30 Sept. 2022, a dual-polarization C-band radar was deployed and operated using a novel, multi-sensor agile adaptive sampling strategy to track the entire lifecycle of isolated convective clouds. Analysis of the ESCAPE observations has already yielded preliminary findings on how aerosols and environmental conditions impact the convective life cycle. 
    more » « less
  7. Abstract Multisensor Agile Adaptive Sampling (MAAS), a smart sensing framework, was adapted to increase the likelihood of observing the vertical structure (with little to no gaps), spatial variability (at subkilometer scale), and temporal evolution (at ∼2-min resolution) of convective cells. This adaptation of MAAS guided two mechanically scanning C-band radars (CSAPR2 and CHIVO) by automatically analyzing the latest NEXRAD data to identify, characterize, track, and nowcast the location of all convective cells forming in the Houston domain. MAAS used either a list of predetermined rules or real-time user input to select a convective cell to be tracked and sampled by the C-band radars. The CSAPR2 tracking radar was first tasked to collect three sector plan position indicator (PPI) scans toward the selected cell. Edge computer processing of the PPI scans was used to identify additional targets within the selected cell. In less than 2 min, both the CSAPR2 and CHIVO radars were able to collect bundles of three to six range–height indicator (RHI) scans toward different targets of interest within the selected cell. Bundles were successively collected along the path of cell advection for as long as the cell met a predetermined set of criteria. Between 1 June and 30 September 2022 over 315 000 vertical cross-section observations were collected by the C-band radars through ∼1300 unique isolated convective cells, most of which were observed for over 15 min of their life cycle. To the best of our knowledge, this dataset, collected primarily through automatic means, constitutes the largest dataset of its kind. 
    more » « less
  8. Abstract A multi-agency succession of field campaigns was conducted in southeastern Texas during July 2021 through October 2022 to study the complex interactions of aerosols, clouds and air pollution in the coastal urban environment. As part of the Tracking Aerosol Convection interactions Experiment (TRACER), the TRACER- Air Quality (TAQ) campaign the Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) and the Convective Cloud Urban Boundary Layer Experiment (CUBE), a combination of ground-based supersites and mobile laboratories, shipborne measurements and aircraft-based instrumentation were deployed. These diverse platforms collected high-resolution data to characterize the aerosol microphysics and chemistry, cloud and precipitation micro- and macro-physical properties, environmental thermodynamics and air quality-relevant constituents that are being used in follow-on analysis and modeling activities. We present the overall deployment setups, a summary of the campaign conditions and a sampling of early research results related to: (a) aerosol precursors in the urban environment, (b) influences of local meteorology on air pollution, (c) detailed observations of the sea breeze circulation, (d) retrieved supersaturation in convective updrafts, (e) characterizing the convective updraft lifecycle, (f) variability in lightning characteristics of convective storms and (g) urban influences on surface energy fluxes. The work concludes with discussion of future research activities highlighted by the TRACER model-intercomparison project to explore the representation of aerosol-convective interactions in high-resolution simulations. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026